期刊文献+

可降解镁合金支架聚合物涂层剥离的有限元模型及实验研究(英文) 被引量:2

Modeling and Experimental Studies of Peeling of Polymer Coating for Biodegradable Magnesium Alloy Stents
原文传递
导出
摘要 可降解镁合金支架(MAS)能够改善商用裸支架和药物洗脱支架的长期治疗效果。由于镁合金支架在人体内降解速度太快,限制了其对病变血管的支撑性能。保护性聚合物涂层为镁合金支架提供了一种降低腐蚀速度的有效方法。然而,聚合物涂层在支架扩张时出现的剥离现象是阻碍其运用的一大障碍。在本研究中,分别运用有限元方法和实验方法对一种优化设计的镁合金支架进行了聚合物涂层剥离问题的研究。首先通过90o剥离实验测试,为粘聚区有限元模型提供了临界能量释放率,以此为基础的90o剥离的模拟结果和实验结果吻合良好。运用可靠的粘聚区模型参数,支架-聚合物涂层有限元模型考察了支架在扩张过程中是否会发生涂层剥离现象。本研究为考察支架聚合物涂层剥离现象提供了一种简单可靠的方法,为改善可降解镁合金支架的聚合物涂层性能提出了相应的建议。 Biodegradable magnesium alloy stems (MAS) could improve the long-term clinical results of commercial bare metal or drug-eluting stents. MAS have shown a limited mechanical support for diseased vessels due to fast degradation. Protective polymer coating is a reasonable way to reduce the degradation rate of MAS. However, peeling of the coating during stent expansion is the main obstacle in stent application. In this study, experimental and computational methods were used to study the peeling problem of an optimized MAS design. The 90~ peeling test provided the critical energy release rate with cohesive zone method to be used in the simulation study; the 90° peeling modeling had good agreement with the experimental test. Using reliable cohesive element material parameters, the simulation could verify whether the peeling happened when the coated MAS was expanded. The aim of this study is to provide an easy and reliable method to approach peeling problem of MAS, giving the instructions for the improvement of MAS coatings.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第12期2877-2882,共6页 Rare Metal Materials and Engineering
基金 Fondazione CaRiTRO(2011.0250) Politecnico di Milano International Fellowships Program(PIF)
关键词 镁合金支架 涂层 有限元分析 粘聚区模型 剥离 magnesium alloy stent coating finite element analysis cohesive zone method peeling
  • 相关文献

参考文献18

  • 1Onuma Y, Ormiston J, Serruys P W. Circulation Journal[J]. 2011,75:509. 被引量:1
  • 2Ramcharitar S, Serruys P W. American Journal of Cardiovascular Drugs[S], 2008,8: 305. 被引量:1
  • 3Erbel R,Di Mario C, Bartunek J et al. Lancet[J].2007, 369: 1869. 被引量:1
  • 4Slottow T L P,Pakala R, Waksman R. European Heart Journal[S], 2008, 29: 314. 被引量:1
  • 5Zhang Z M, Xu H Y,Wang Q. Transactions of Nonferrous Metals Society of C7n?a[J],2008,18: S140. 被引量:1
  • 6Wu W, Petrini L, Gastaldi D et al. Annals of Biomedical Engineering[J], 2010,38: 2829. 被引量:1
  • 7Wittchow E, Adden N, Riedmuller J et al. Eurointervention[J].2013, 8: 1441. 被引量:1
  • 8Martin D, Boyle F J. Computer Methods in Biomechanics and Biomedical Engineering[J], 2011, 14: 331. 被引量:1
  • 9Wu W, Gastaldi D, Yang K et al. Materials Science and Engineering B[S], 2011, 176: 1733. 被引量:1
  • 10Wu W, Chen S, Gastaldi D et al. Acta Biomaterialia[J], 2013,9: 8730. 被引量:1

同被引文献20

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部