期刊文献+

基于跟踪状态监视的稳健航迹关联与融合算法 被引量:1

Robust Track Association and Fusion Algorithm with Tracking State Monitoring
下载PDF
导出
摘要 空间邻近目标跟踪过程中存在航迹交错现象,传统的航迹关联与融合算法可靠性大大降低。提出基于跟踪状态监视的稳健航迹关联与融合跟踪算法:首先,采用滑窗式全局最优关联方法利用多帧航迹数据确认航迹关联对,并建立系统航迹;然后,根据确认关联航迹的实时关联状态检测航迹交错;最后,根据航迹衰减残差识别运动状态,自适应选择融合量测或者融合状态估计完成系统航迹的状态更新。仿真结果表明,算法能够提高融合航迹精度,实现稳健航迹关联与融合。 There exists track swap when tracking closely spaced targets,which may decrease the reliability of traditional track association and fusion algorithms greatly. Thus we proposed a robust track association and fusion algorithm with tracking state monitoring. Firstly,a sliding window global optimum association was adopted to ascertain associated track pair and establish system tracks with multiple frame track data. Then the real-time association relation of associated track pair was used to detect track swap. Lastly,track attenuated residual was used to identify maneuver in order to select the fused measurements or fused state estimation adaptively in updating state of system tracks. Simulation result shows that the proposed algorithm can improve accuracy of fusion tracks and realize robust track association and fusion.
出处 《电光与控制》 北大核心 2015年第1期6-10,共5页 Electronics Optics & Control
基金 国家自然科学基金(61032001) 山东省自然基金(ZR2012FQ004)
关键词 航迹关联 航迹融合 跟踪状态监视 空间邻近目标 track association track fusion tracking state monitoring Closely Spaced Objects(CSO)
  • 相关文献

参考文献12

  • 1KORN JHOLTZ HFARBER M S.Trajectory estimation of closely spaced objects (CSO) using infrared focal plane data of an STSS (space tracking and surveillance system) platform [C]//Signal and Data Processing of Small TargetsOrlandoUSA2004:387-399. 被引量:1
  • 2BOERS YSVIESTINS EDRIESSEN H.Mixed labelling in multitarget particle filtering [J].IEEE Transactions on Aerospace and Electronic System201046(2):792-802. 被引量:1
  • 3AOKI E HBOERS YSVENSSON Let al.A Bayesian look at the optimal track labelling problem[C]//The 9th IET Data Fusion & Target Tracking Conference:Algorithms & ApplicationsLondonUK2012:1-6. 被引量:1
  • 4PANAKKAL V PVELMURUGAN R.Iterative joint probabilistic data association for avoiding track coalescence and track swap in multitarget tracking[C]//The 7th Sensor Array and Multichannel Signal Processing WorkshopHobokenUSA2012:285-288. 被引量:1
  • 5谢美华,王正明.基于样条模型的多传感器目标跟踪算法研究[J].宇航学报,2005,26(3):291-295. 被引量:2
  • 6LANCASTER JBLACKMAN S.Joint IMM/MHT tracking and identification for multisensor ground target tracking [C]//The 9th International Conference on Information FusionItaly2006:1-7. 被引量:1
  • 7ROECKER J A.Track monitoring when tracking with multiple 2D passive sensors [J].IEEE Transactions on Aerospace and Electronic Systems199127(6):872-876. 被引量:1
  • 8DANU D GSINHA AKIRUBARAJAN T.Tracktotrack association using informative prior associations[C]//Signal and Data Processing of Small TargetsSan Diego USA 2007:1-10. 被引量:1
  • 9林两魁..天基红外传感器对中段弹道目标群的跟踪与超分辨技术研究[D].国防科学技术大学,2011:
  • 10BARSHALOM YFORTMANN T E.Tracking and data association [M].New York:Academic Press1988. 被引量:1

二级参考文献3

共引文献1

同被引文献9

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部