期刊文献+

微博用户兴趣发现研究 被引量:8

Research on Discovering Micro-blog User Interests
原文传递
导出
摘要 【目的】微博用户兴趣发现对微博社交网络的个性化推荐和提升用户满意度具有重要的意义和价值。【方法】不仅通过挖掘用户自身微博数据识别出用户兴趣,而且进一步挖掘其关注用户的微博数据以及他们之间的社交联系,并通过计算用户微博与其关注用户兴趣的相似度以及用户与其关注用户间的亲密度,进一步发现用户兴趣。最后将从两方面发现的兴趣进行合并,得出用户的兴趣。【结果】基于爬取的新浪微博数据集进行实验,准确率和召回率较传统的方法提升15%以上。【局限】数据预处理中,停用词表不充分,没有实现停用词表的自动学习;需人工标注用户兴趣集计算准确率和召回率。【结论】实验结果表明,该方法明显优于传统方法,能够更加有效和准确地发现用户兴趣。 [Objective] Discovering the micro-blog user interests plays an important role in the personalized recom- mendation of micro-blog social network to improve users' satisfaction. [Methods] In this paper, apart from the data mining from the user's own micro-blog, analyze the data of the micro-blogs that followed by this user, as well as the social correlation among them. By computing the similarity between their micro-blogs and intimacy, uncover the user interests further. Also combine the results coming from the two aforementioned aspects to get the interest set of users. [Results] This paper experiments on the dataset gained from Sina Micro-blog, and the precision rate and recall rate rise both more than 15% compared with the traditional method. [Limitations] The stop words are not full in the process of data preprocessing, because of not realize the automatic learning the list of stop words. And needs manually tagging user interest set to calculate the precision rate and recall rate. [Conclusions] The experimental results show that the method is better than the traditional method, and it's more effective and accurate to discover user interests.
出处 《现代图书情报技术》 CSSCI 2015年第1期52-58,共7页 New Technology of Library and Information Service
基金 国家自然科学基金项目"基于语义分析的中文微博信息挖掘方法研究"(项目编号:61370139) 网络文化与数字传播北京市重点实验室资助项目"面向微博的社交网络研究及其舆情分析"(项目编号:ICDD201309) 北京市属高等学校创新团队建设与教师职业发展计划项目"大数据内容理解的理论基础及智能化处理技术"(项目编号:IDHT20130519)的研究成果之一
关键词 微博 兴趣发现 关注用户 Micro-blog Discover interests Following users
  • 相关文献

参考文献16

  • 1Tang X, Zhang M, Yang C C. User Interest and Topic Detection for Personalized Recommendation [C]. In: Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, Macao, China. IEEE Computer Society, 2012: 442-446. 被引量:1
  • 2Genc Y, Sakamoto Y, Nickerson J V. Discovering Context: Classifying Tweets through a Semantic Transform Based on Wikipedia [C]. In: Proceedings of the 6th International Conference on Foundations of Augmented Cognition: Directing the Future of Adaptive Systems, Orlando, USA. Springer Berlin Heidelberg, 2011: 484-492. 被引量:1
  • 3Welch M J, Schonfeld U, He D, et al. Topical Semantics of Twitter Links [C]. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM'11). New York: ACM, 2011: 327-336. 被引量:1
  • 4Abel F, Gao Q, Houben G J, et al. Semantic Enrichment of Twitter Posts for User Profile Construction on the Social Web [C]. In: Proceedings of the 8th Extended Semantic Web Conference on the Semanic Web: Research and Pages (ESWC'11). Berlin, Heidelberg: Springer-Verlag, 2011: 375-389. 被引量:1
  • 5Xu Z, Lu R, Xiang L, et al. Discovering User Interest on Twitter with a Modified Author-Topic Model [C]. In: Proceedings of the 2011 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Lyon, France. IEEE, 2011: 422-429. 被引量:1
  • 6Michelson M, Macskassy S A. Discovering Users' Topics of Interest on Twitter: A First Look [C]. In: Proceedings of the 4th Workshop on Analytics for Noisy Unstructured Text Data (AND'10). New York: ACM, 2010: 73-80. 被引量:1
  • 7宋巍,张宇,谢毓彬,刘挺,李生,都云程.基于微博分类的用户兴趣识别[J].智能计算机与应用,2013,3(4):80-83. 被引量:12
  • 8方维..微博兴趣识别与推送系统的研究与实现[D].华中科技大学,2012:
  • 9孙威..微博用户兴趣挖掘与建模研究[D].大连理工大学,2012:
  • 10崔争艳.基于语义的微博短信息分类[J].现代计算机,2010,16(8):18-20. 被引量:18

二级参考文献37

共引文献267

同被引文献99

  • 1哈工大社会计算与信息检索研究中心.语言技术平台[EB/OL].哈尔滨:哈工大社会计算与信息检索研究中心,2011-06-01.http://ir.hit.edu.cn/hp/. 被引量:5
  • 2CLAUSET A, Finding Community S ,tructure in Very Large Net- works [ J ]. Physical Review E, 200. j, 72 ( 2 ) :026132. 被引量:1
  • 3Hengmin Zhou, Daniel Zeng, C' ,langli Zhang. Finding Leaders from Opinion Net works[ C ]. 20/39 IEEE International Conference on Intelligence an d Security Irt "ormatics ,2009:266-268. 被引量:1
  • 4Vander Wal V. Folksonomy[EB/OL]. [2014-06-01]. http://vanderwal.net/folksonomy-Html. 被引量:1
  • 5Yoo Donghee, Sub Yongmoo. User-categorlzeu tags to build International Conference on Communication Software and Networks, 2010: 160-164. 被引量:1
  • 6Kawakubo H, Akima Y, Yanai K. Automatic construction of a folksonomy-based visual ontology[C]//IEEE International Svmoosium on Multimedia, 2010: 330-335. 被引量:1
  • 7Alves H, Santanche A. Folksonomized Ontology and the 3E Steps Technique to Support Ontology Evolvement[J].Web Semantics: Science, Services and Agents on the World Wide Web, 2013(18): 19-30. 被引量:1
  • 8徐文海,温有奎.一种基于TFIDF方法的中文关键词抽取算法[J].情报理论与实践,2008,31(2):298-302. 被引量:65
  • 9胡吉明,胡昌平.基于群体网络行为的用户聚合分析[J].情报杂志,2008,27(7):71-73. 被引量:4
  • 10宁亚辉,樊兴华,吴渝.基于领域词语本体的短文本分类[J].计算机科学,2009,36(3):142-145. 被引量:41

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部