期刊文献+

基于检测的荧光显微图像中的神经丝蛋白质跟踪 被引量:2

Neurofilaments tracking by detection in fluorescence microscopy images
下载PDF
导出
摘要 神经丝蛋白质是沿神经轴突运输的功能性蛋白聚合物,神经丝蛋白质的运动研究对于如神经退行性疾病的诊断等应用是非常重要的。传统的方法在很大程度上依赖于在荧光显微镜图像下手工标记神经丝蛋白质。描述了一种基于检测跟踪的自动神经丝运动分析方法,用这种方法提取出沿轴突运动的神经丝轨迹并描绘成一条参数化曲线。首先,将轴突分解成块,然后利用马尔可夫随机场图形标签来确定包含运动神经丝的轴突块,最后将神经丝的首端和尾端位置细化到亚像素精度。神经丝运动的实际延时荧光图像序列实验表明了所提方法的有效性和可靠性。 Neurofilaments are functional protein polymers that are transported along the axonal processes of nerve cells.Studying the movement of neurofilaments is important in applications such as diagnosing neurodegenerative diseases.Traditional methods largely rely on manual labeling of the neu-rofilaments in fluorescence microscopy images.An automated method for analyzing the motion of neurofilaments based on tracking-by-detection is proposed.The axon along which the neurofilaments move is extracted and represented by a parametric curve.Firstly,the axon is decomposed into blocks.Secondly,the blocks containing the moving neurofilaments are determined by graph labeling using Markov Random Field.Finally,the leading and trailing locations of a neurofilament are refined to sub-pixel accuracy.Experiments on real time-lapse fluorescence image sequences of neurofilament movement demonstrate the efficacy and efficiency of our proposed method.
作者 袁亮 朱俊达
出处 《计算机工程与科学》 CSCD 北大核心 2015年第1期119-124,共6页 Computer Engineering & Science
基金 国家自然科学基金资助项目(31460248 61262059) 教育部留学回国人员科研启动基金资助项目 新疆优秀青年科技创新人才培养项目(2013721016) 新疆大学博士启动基金资助项目
关键词 马尔科夫随机场(MRF) 图形切割 荧光显微镜 Markov Random Field (MRF) graph cut fluorescence microscopy
  • 相关文献

参考文献16

  • 1Bray D.Cell movements:From molecules to motility[M].2edition.New York:Garland Science,2000. 被引量:1
  • 2Brown A.Axonal transport of membranous and nonmembranous cargoes[J].Journal of Cell Biology,2003,160(6):817-821. 被引量:1
  • 3Brown A.Live-cell imaging of slow axonal transport in cultured neurons[J].Methods in Cell Biology,2003,71:305-323. 被引量:1
  • 4Goldman R D,Spector D L.Live cell imaging:A laboratory manual[M].2edition.New York:Cold Spring Harbor Laboratory Press,2009. 被引量:1
  • 5Smal I,Draegestein K,Galjart N,et al.Particle filtering for multiple object tracking in dynamic fluorescence microscopy images:Application to microtubule growth analysis[J].IEEE Transactions on Medical Imaging,2008,27(6):789-804. 被引量:1
  • 6Yuan L,Zheng Y F,Zhu J,et al.Object tracking with particle filtering in fluorescence microscopy images:Application to the motion of neurofilaments in axons[J].IEEE Transactions on Medical Imaging,2012,31(1):117-130. 被引量:1
  • 7Sargin M E,Altinok A,Rose K,et al.Deformable trellis:Open contour tracking in bioimage sequences[C]∥Proc of IEEE International Conference on Acoustics,Speech,and Signal Processing,2008:561-564. 被引量:1
  • 8Koulgi P,Sargin M E,Rose K,et al.Graphical model-based tracking of curvilinear structures in bio-image sequences[C]∥Proc of International Conference on Pattern Recognition,2010:2596-2599. 被引量:1
  • 9Zhang K,Osakada Y,Xie W,et al.Automated image analysis for tracking cargo transport in axons[J].Microscopy Research and Technique,2010,74(7):605-613. 被引量:1
  • 10Welzel O,Boening D,Stroebel A,et al.Determination of axonal transport velocities via image cross-and autocorrelation[J].European Biophysics,2009,38(7):883-889. 被引量:1

同被引文献19

  • 1司永胜,刘刚,高瑞.基于K-均值聚类的绿色苹果识别技术[J].农业机械学报,2009,40(S1):100-104. 被引量:50
  • 2李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 3ZHU J D, YUAN L. Neurofilament Tracking by Detection in Fluorescence Microscopy Images[C]//Proceedings of 2013 IEEE International Conference on Image Processing. Piscataway: IEEE, 2013: 3123-3127. 被引量:1
  • 4YUAN L, Zheng Y F. Object Tracking With Particle Filtering in Fluorescence Microscopy Images: Application to the Motion of Neurfilaments in Axons[J]. IEEE Transactions on Medical Imaging, 2012, 31(1): 117-130. 被引量:1
  • 5BAI K J, LIU W M. Improved Object Tracking with Particle Filter and Mean Shift [C] //Proceedings of the IEEE International Conference on Automation and Logistics. Piscataway: IEEE, 2007: 431-435. 被引量:1
  • 6KONG K Y, MARCUS A I, GIANNAKAKOU P, et al. Using Particle Filter to Track and Model Microtubule Dynamics[C]// Proceedings of the IEEE International Conference on Image Processing: 5. Piscataway: IEEE, 2007: 517-520. 被引量:1
  • 7ARULAMPALAM M S, MASKELL S, GORDON N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non- Gaussion Bayesian Tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2) : 174-188. 被引量:1
  • 8JU B, ZHANG Z H, ZHU J B. A Novel Proposal Distribution for Particle Filler [C] //Proceedings of the 2010 3rd International Congress on Image and Signal Processing: 7. Piscataway: IEEE, 2010: 3120-3124. 被引量:1
  • 9SMAL I, GRIGORIEV I. Microtuble Dynamics Analysis Using Kymographs and Variable-Rate Particle Filters[J]. IEEE Transactions on Medical Imaging, 2010, 19(7) : 1861-1876. 被引量:1
  • 10佟向军,陈建国,翟中和.神经丝的结构与功能[J].细胞生物学杂志,1998,20(2):63-68. 被引量:21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部