期刊文献+

基于VaR相关函数的金融风险度量的实证分析

Positive analysis of the correlation function based on VaR in financial risk management
下载PDF
导出
摘要 以风险价值(value at risk,VaR)为金融风险度量,结合Copula函数及其相关函数建立金融风险模型.考虑到金融时间序列的时变性和厚尾特性,根据GARCH(generalized autoregressive conditional heteroscedasticity)模型和极值理论的POT(peak over threshold)模型,运用Copula方法来估计VaR的值.给出实例验证,将上述方法用于刻画美国纳斯达克指数和标准普尔指数的相关性,并计算了等权重下资产组合的VaR估计值.结果表明:VaR估计值的大小与所取的置信水平以及持有期有关;t-Copula和Clayton Copula方法较其他方法能更好地捕捉资产组合的相关关系,从而可以得到更好的VaR估计值. Using VaR (value at risk) as the measure of financial risk, this thesis applies Copula function and its relevant functions to establish a financial risk module. Considering the time-varying and fat-tail features of the financial time series, it uses Copula method to estimate the value of VaR, according to GARCH (generalized autoregressive conditional heteroscedasticity) model and POT (peak over threshold) module in extreme value theory. The method is illustrated with an example that the correlativity of American NASDAQ index and Standard & Poor's indices are indicated and the estimated VaR of the equal weight portfolio is calculated. The result shows that the estimated value of VaR is related to confidence level and holding period, t Copula and Clayton Copula methods are superior to others in capturing the correlativity of portfolio, hence the estimated VaR is better.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2014年第4期25-29,共5页 Journal of Yangzhou University:Natural Science Edition
基金 江苏省自然科学基金资助项目(BK20141326) 教育部高等学校博士学科点专项科研基金(博导类)资助课题(20120092110021) 江苏省高等教育教学改革研究课题重点项目(2011JSJG085)
关键词 风险价值 金融时间序列 广义自回归条件异方差 极值理论 COPULA函数 value at rish financial time series generalized autoregressive conditional heteroscedas-ticity extrme value theory Copula function
  • 相关文献

参考文献3

二级参考文献29

  • 1沈兵.汇率收益率的异方差:基于不同频率的风险价值度量[J].广西金融研究,2005(7):3-10. 被引量:2
  • 2徐剑刚,唐国兴.我国股票市场报酬与波动的GARCH-M模型[J].数量经济技术经济研究,1995,12(12):28-32. 被引量:32
  • 3Bollerslev Tim.Generalized autoregressive conditional heteroskedasticity.Journal of Econometrics.1986(31):307-327. 被引量:1
  • 4Engle R.F.Autoregressive Conditional heteroskedasticity with estimates of the variance of U.K.inflation,Econometrica.1982,(50):987-100S. 被引量:1
  • 5Javiera Aguilar,Stefan Nydahl.Central bank intervention and exchange rates:the case of Sweden[J].Journal of International Financial Markets,Institutions and Money,2000(10):303-322. 被引量:1
  • 6Torben G.A.,Tim Bollerslev,Francis X.D.,Paul Labys.The Distribution of Realized Exchange Rate Volatility[J].Journal of American Statistical Association.2001,96(453):42-55. 被引量:1
  • 7Y.Yasuhiro,Y.Toshirnao,Comparative Analyses of Expected Shortfall and Value-at-risk:Their validity under Market Stress[J],Monetary and Economic Study,20,3,181-237,2002. 被引量:1
  • 8Philippe Jorion. Value at Risk[M].New York:The Mc Graw-Hill Companies, Inc, 1997. 被引量:1
  • 9Siegal Thomas, West Ansgar. Statistical bootstrapping methods in VaR calclatuion [J].Applied Mathematical Finance,2001,8(3):167-181. 被引量:1
  • 10李胜朋,王洪礼,李栋.外汇风险的极值相关模型[J].系统工程理论与实践,2007,27(9):82-86. 被引量:6

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部