期刊文献+

环的右奇异理想与交换性定理 被引量:3

Right singular ideals and commutativity theorems for rings
下载PDF
导出
摘要 设R是一个有单位元的结合环.证明了如下结果:若对任意元x∈R\Zr(R)={x∈R|xZr(R)},y∈R,满足方程(xy)k=xkyk,k=n,n+1,n+2,其中n是一个正整数,则R是交换环. Let R be an associative ring with identity. It is shown that if for each x∈R/Zr(R)={x∈R|xZr(R)},y∈R and y∈R, (xy)^k=x^k y^k for k=n,n+1,n+2, where n is a positive integer, then R is commutative.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2014年第4期5-7,共3页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11171291)
关键词 右零化子 右奇异理想 交换环 right singular ideals right essential ideals commutative rings
  • 相关文献

参考文献11

  • 1BELL H E, KLEIN A A. A combinatorial cornrnutativity property [or rings [J]. Int J Math Math Sci, 2002, 29(9) : 525-530. 被引量:1
  • 2BELL H E, YAQUB A. Near-commutativity and partial periodicity conditions for rings [J]. Results Math, 2004, 46(1/2): 24-30. 被引量:1
  • 3HERSTEIN I N. A commutativity theorem [J]. J Algebra, 1976, 38: 47-57. 被引量:1
  • 4HERSTEIN I N. Power maps in rings [J]. Michigan Math J, 1961, 8(1): 29-32. 被引量:1
  • 5ABU KHUZAM H. A commutativity theorem for semiprime rings [J]. Bull Austral Math Soc, 1983, 27(2) : 221 224. 被引量:1
  • 6NICHOLSON WK, YAQUBA. A commutativitytheorem [J]. Algebra Univers, 1980, 10(1): 260-263. 被引量:1
  • 7JAMESPI.. Commutativityconditions for rings: 1950 2005 [J]. Expo Math, 2007, 25(2): 165-174. 被引量:1
  • 8KOMATSU H, NISHINAKA T, TOMINAGA H. A commutativity theorem for rings [J]. Bull Austral Math Soc, 199l, 44(3): 387 389. 被引量:1
  • 9WEI Junchao, FAN Zhiyong. A generalization of eommmativity theorem for rings [J]. Analele Sliint Ale Univ Math, 2014, 60(2): 1-3. 被引量:1
  • 10WE1 Junchao. Some notes on CN rings [J]. Bull Malays Math Sci Soc, 2014, 37(3): 25 37. 被引量:1

同被引文献15

  • 1Drazin M P. Rings with central idempotent or nilpotent elements [J] . Proc Edinburgh Math Soc, 1958, 9 (2) 157-165. 被引量:1
  • 2Wei J unchao. Some notes on CN rings [J]. bull Malays Math Sci Sco, 2014,37 (3) : 25 - 37. 被引量:1
  • 3Anderson F W,Fuller K R. Rings and categories of modules[M].2nded. New York:Springer-Verlag, 1992. 被引量:1
  • 4Nicholson W K and Yaqub A. A commutativity theorem[J]. Algebra Universalis, 1980,10 : 260- 263 ; 113 - 116. 被引量:1
  • 5ANDERSON F W, FULLER K R. Rings and categories of modules [M]. 2nd ed. New York: Springer-Verlag,2012: 1-339. 被引量:1
  • 6JAMES P L. Commutativity conditions for rings: 1950-2005 [J]. Expo Math, 2007, 25(2) : 165-174. 被引量:1
  • 7HERSTEIN I N. A commutativity theorem [J]. J Algebra, 1976,38(1) : 112-118. 被引量:1
  • 8BELL H E. On the power map and ring commutativity [J], Canad Math Bull,1978,21(3) : 399-404. 被引量:1
  • 9QU Yinchun* JIA Tingting, WEI Junchao. Some notes on JTTC rings [J]. Bull Scien Math, 2015, 139(2):161-177. 被引量:1
  • 10WEI Junchao, FAN Zhiyong. A generalization of commutativity theorem for rings [J]. Annals Alexand loanCuza Univ Math, 2015,61(1) : 97-100. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部