摘要
设R是一个有单位元的结合环.证明了如下结果:若对任意元x∈R\Zr(R)={x∈R|xZr(R)},y∈R,满足方程(xy)k=xkyk,k=n,n+1,n+2,其中n是一个正整数,则R是交换环.
Let R be an associative ring with identity. It is shown that if for each x∈R/Zr(R)={x∈R|xZr(R)},y∈R and y∈R, (xy)^k=x^k y^k for k=n,n+1,n+2, where n is a positive integer, then R is commutative.
出处
《扬州大学学报(自然科学版)》
CAS
北大核心
2014年第4期5-7,共3页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(11171291)
关键词
右零化子
右奇异理想
交换环
right singular ideals
right essential ideals
commutative rings