期刊文献+

基于运动矢量场的运动目标区域检测 被引量:1

Detection of moving object regions based on motion vector fields
原文传递
导出
摘要 基于稀疏运动矢量场,提出一种动态背景下的运动目标区域检测方法。根据运动矢量场特性分析进行全局运动参数估计和全局运动补偿,实现动态场景中的背景校正;利用最大树数据结构,基于运动矢量补偿误差分级表示视频帧中运动基本一致的连通区域,进行运动区域初始分类;根据运动目标在空间上的连通性和运动一致性的特点,选择区域相似性度量准则,进行区域合并和滤波,将具有相似运动的连通区域合并,实现运动目标区域检测。将检测出的运动目标区域作为运动矢量外点反过来又应用于全局运动参数估计过程中,全局运动估计和运动目标区域检测交替地进行,不仅加快了它们的计算速度,同时也提高了它们计算和检测的准确性。实验结果表明,本文算法能较好地补偿序列的全局运动,有效地检测出局部目标运动区域。 A new method using the coarsely sampled motion vector fields to detect moving object regions from dynamic background is proposed. The proposed method estimates global motion parameters by analyzing properties of motion vectors, and compensates the global motion for removing background motion in motion vector fields. The motion vector compensated errors generated from global motion compensation are then utilized to create max-tree data structure representation for video frames. The connected regions that have almost the same movement in video frames are hierarchically represented,and the initial classifications of motion areas are completed. According to the spatial connectivity and motion consistency of the same motion object, the regional similarity measure criteria are selected and utilized for regions splitting and merging. The connected areas with similar movement are merged, and the moving object regions are then detected. The segmented moving object regions are then treated as outliers and rejected in the next round of global motion estimation. The alternation between global motion estimation and motion segmentation not only speeds up the computation, but also improves the precision of calculation and detectioru Experimental results demonstrate that the proposed approach can effectively compensate the background motion and detect moving object regions from dynamic background.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第12期2387-2392,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(60870010 61102139)资助项目
关键词 运动矢量场 全局运动估计 全局运动补偿 最大树结构 运动目标区域检测 motion vector field global motion estimation global motion compensation max-tree structure moving object regions detection
  • 相关文献

参考文献15

  • 1HAO J J, LI O, KIM Z W. et al. Spatio-temporal traffic scene modeling for object motion detection [J]. IEEE Transactions on Intelligent Transportation Systems. 2013.14(1) :295-302. 被引量:1
  • 2Ochs P,Malik J, Brox T. Segmentation of moving objectsby long term video analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.36 ( 6 ) :1187-1199. 被引量:1
  • 3Luo T, Ronald H Y,Chow K P. A novel object segmentaion method for silhouette tracker in video surveillance appli- cation[A]. Prec. of International Conference on Computa- tional Science and Computational Intelligence[C]. 2011, 103-107. 被引量:1
  • 4LIN Chun-li ,WANG Ke-jun, XIA Yu, et al. Detection meth- od of moving object with small displacement[J]. Journal of Optoelectronics Laser.20] ] .22(3) :4 18-121. 被引量:1
  • 5Panda D K, Meher S. Video object segmentation based on adaptive background and wronskian change detection model[A]. Proc. of International Conference on Signal Processing and Communication[C]. 20 1 3,219-22.1. 被引量:1
  • 6SU Yan-zhao. LI Ai-hua, JIN Guang-zhi, et al. Illumination compensation for moving objects detecting in video se- quences[J]. Journal of Optoelectronics- Laser, 2014,25 (1):163-171. 被引量:1
  • 7Thomas M, King N N. Video segmentation for content- based coding[J]. IEEE Transactions on Circuits and Sys- tems for VideoTechnology, 1999,9(8) .. 1190-1203. 被引量:1
  • 8Babu R V,Ramakrishnan K R,Srinivasan S H. Video ob- ject segmentation.. A compressed domain approach[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004,14(4) : 462-474. 被引量:1
  • 9Chen Y M, Bajic I V. Moving region segmentation from Compressed video using global motion estimation and markov random fields[J]. IEEE Transactions on Multime- dia,2011,13(3) :421-431. 被引量:1
  • 10Fei W,Zhu S. Mean shift clustering-based moving object segmentation in the H. 264 compressed domain[J]., lET Image Process,2010,4(1) :11-18. 被引量:1

二级参考文献16

  • 1Chen Y M and Bajic I V. A joint approach to global motion estimation and motion segmentation from a coarsely sampled motion vector field[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(9): 1316-1328. 被引量:1
  • 2Li H J, Tang J H, Wu S, et al.. Automatic detection and analysis of player action in moving background sports video sequences[J]. IEEE Transactions on Circuits and Systems ]or Video Technology, 2010, 20(3): 351-364. 被引量:1
  • 3Keller Y and Averbuch A. Fast gradient methods based on global motion estimation for video compression[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(4): 300-309. 被引量:1
  • 4Kumar S, Azartash H, Biswas M, et al.. Real-time affine global motion estimation using phase correlation and its application for digital image stabilization[J]. IEEE Transactions on Image Processing, 2011, 19(5): 3406-3418. 被引量:1
  • 5Bin Q, Ghazal M, and Amer A. Robust global motion estimation oriented to video object segmentation [J]. IEEE Transactions on Image Processing, 2008, 17(6): 958-967. 被引量:1
  • 6Haque M N, Biswas M, Pickering M R, et al.. An adaptive low-complexity global motion estimation algorithm[C]. Proceeding of 28th Picture Coding Symposium, Nagoya, Japan, 2010: 598-601. 被引量:1
  • 7Su Y, Sun M T, and Hsu V. Global motion estimation from coarsely sampled motion vector field and the applications[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15(2): 232-242. 被引量:1
  • 8Dinh T N and Lee G. Efficient motion vector outlier removal for global motion estimation[C]. Proceeding of IEEE International Conference on Multimedia and Expo, Barcelona, Spain, 2011: 1-6. 被引量:1
  • 9Hailer M, Krutz A, and Sikora T. Evalualuation of pixel-andmotion vector-based global motion estimateion for camera motion characterizeationIC]. Proceeding of 10th Workshop on Image Analysis for Multimedia Interactive Services, London, United Kingdom, 2009: 49-52. 被引量:1
  • 10Yin H B, Fang X Z, Yang H, et al.. Motion vector smoothing for true motion estimation[C]. Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006: 241-244. 被引量:1

共引文献3

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部