期刊文献+

PAC-Bayes理论及应用研究综述 被引量:3

Survey on PAC-Bayes Theory and Application Research
下载PDF
导出
摘要 PAC-Bayes理论融合了贝叶斯定理和随机分类器的结构风险最小化原理,它作为一个理论框架,可得到最紧的泛化风险边界。分析了PAC-Bayes理论的研究背景和重要意义,介绍了PAC-Bayes理论框架及其在支持向量机上的应用,分别探讨了多种机器学习算法的PAC-Bayes边界,并特别对非独立同分布数据的PACBayes边界进行了分析。从4个方面深入阐述了PAC-Bayes边界应用的研究现状及进展,并对不同的研究方法和特点进行了比较。最后展望了PAC-Bayes边界未来的研究发展方向。 PAC-Bayes theory integrating theories of Bayesian paradigm and structure risk minimization for stochastic classifiers has been considered as a framework for deriving some of the tightest generalization bounds. This paper analyzes the research background and profound significance of PAC-Bayes theory, and introduces the framework of PAC-Bayes theory and its application to support vector machine (SVM). Then, this paper discusses PAC-Bayes bound of many machine learning algorithms, and specially analyzes the bound with the non-IID data. Furthermore, this paper elaborates research status and development of the PAC-Bayes bound application from four directions, and compares different research methods and features. Finally, this paper draws the research prospect of the PAC-Bayes bound.
出处 《计算机科学与探索》 CSCD 北大核心 2015年第1期1-13,共13页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61170177 国家重点基础研究发展计划(973计划)No.2013CB32930X~~
关键词 PAC-Bayes边界 支持向量机 泛化能力 分类器 PAC-Bayes bound generalization capability classifier
  • 相关文献

参考文献50

  • 1Valiant L.A theory of the learnable[J].Communications of the ACM,1984,27(11):1134-1142. 被引量:1
  • 2Mc Allester D A.Some PAC-Bayesian theorems[J].Machine Learning,1999,37(3):355-363. 被引量:1
  • 3Langford J,Shawe-Taylor J.PAC-Bayes&margins[C]//Advances in Neural Information Processing Systems 15:Proceedings of the 16th Annual Conference on Neural Information Processing Systems(NIPS?02),Vancouver,Canada,Dec9-14,2002.Cambridge,MA,USA:MIT Press,2003:423-430. 被引量:1
  • 4Seeger M.PAC-Bayesian generalisation error bounds for Gaussian process classification[J].Journal of Machine Learning Research,2003,3(2):233-269. 被引量:1
  • 5Langford J.Tutorial on practical prediction theory for classification[J].Journal of Machine Learning Research,2005,6:273-306. 被引量:1
  • 6Herbrich R,Graepel T.A PAC-Bayesian margin bound for linear classifiers[J].IEEE Transactions on Information Theory,2002,48(12):3140-3150. 被引量:1
  • 7Germain P,Lacasse A,Laviolette F,et al.PAC-Bayesian learning of linear classifiers[C]//Proceedings of the 26th Annual International Conference on Machine Learning(ICML?09),Montreal,Canada,Jun 14-18,2009.New York,NY,USA:ACM,2009:353-360. 被引量:1
  • 8Ambroladze A,Parrado-Hern E,Shawe-Taylor J.Tighter PAC-Bayes bounds[C]//Advances in Neural Information Processing Systems 19:Proceedings of the 20th Annual Conference on Neural Information Processing Systems(NIPS?06),Vancouver,Canada,Dec 4-7,2006.Cambridge,MA,USA:MIT Press,2007:9-16. 被引量:1
  • 9Laviolette F,Marchand M.PAC-Bayes risk bounds for samplecompressed Gibbs classifiers[C]//Proceedings of the 22nd International Conference on Machine Learning(ICML?05),Bonn,Germany,Aug 7-11,2005.New York,NY,USA:ACM,2005:481-488. 被引量:1
  • 10Laviolette F,Marchand M.PAC-Bayes risk bounds for stochastic averages and majority votes of sample-compressed classifiers[J].Journal of Machine Learning Research,2007,8:1461-1487. 被引量:1

同被引文献50

  • 1郑致刚,王士星,张帆.基于小波神经网络的模拟电路故障诊断[J].海军航空工程学院学报,2006,21(1):117-120. 被引量:3
  • 2Kearns M J,Vazirani U V.An Introduction to Computational Learning Theory[M].Cambridge.MA:MIT press,1994. 被引量:1
  • 3Tang Li,Yu Hua,Gong Xiujun,et al.On the PAC-Bayes Bound Calculation Based on Reproducing Kernel Hilbert Space[J].Applied Mathematics and Information Sciences,2013,7(2):817-822. 被引量:1
  • 4Tang Li,Zhao Zheng,Gong Xiujun.A Refined MCMC Sampling from RKHS for PAC-Bayes Bound Calculation[J].Journal of Computers,2014,9(4):930-937. 被引量:1
  • 5Valiant L G.A Theory of the Learnable[J].Communications of the ACM,1984,27(11):1134-1142. 被引量:1
  • 6Blumer A,Ehrenfeucht A,Haussler D,et al.Learnability and the Vapnik-Chervonenkis Dimension[J].Journal of the ACM(JACM),1989,36(4):929-965. 被引量:1
  • 7Pestov V.PAC Learnability Versus VC Dimension:a footnote to a basic result of statistical learning[C]∥Neural Networks(IJCNN),The 2011International Joint Conference on.IEEE,2011:1141-1145. 被引量:1
  • 8Wesley Calvert.PAC Learning,VC Dimension,and the Arithmetic Hierarchy[Z/OL].ArXiv Preprint ArXiv:1406.1111,2014. 被引量:1
  • 9Anthony M,Biggs N.Computational Learning Theory for Artificial Neural Networks[J].North-Holland Mathematical Library,1993,51:25-62. 被引量:1
  • 10Hernández-Aguirre A,Buckles B P,Martánez-Alcántara A.The Probably Approximately Correct(PAC)Population Size of a Genetic Algorithm[C]∥Tools with Artificial Intelligence,2000.ICTAI 2000∥Proceedings of 12th IEEE International Conference on.IEEE,2000:199-202. 被引量:1

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部