期刊文献+

有效的子空间支配查询算法——Ranking-k

Ranking-k: effective subspace dominating query algorithm
下载PDF
导出
摘要 针对Top-k dominating查询算法需要较高的时空消耗来构建属性组合索引,并且在相同属性值较多情况下的查询结果准确率低等问题,提出一种通过B+-trees和概率分布模型相结合的子空间支配查询算法——Ranking-k算法。首先,采用B+-trees为待查找数据各属性构建有序列表;然后,采取轮询调度算法读取skyline准则涉及到的有序列表,生成候选元组并获得k组终结元组;其次,根据生成的候选元组和终结元组,采用概率分布模型计算终结元组支配分数。迭代上述过程优化查询结果,直到满足条件为止。实验结果表明:Ranking-k与基本扫描算法(BSA)相比,查询效率提高了94.43%;与差分算法(DA)相比,查询效率提高了7.63%;与早剪枝Top-k支配(TDEP)算法、BSA和DA相比,查询结果更接近理论值。 Top-k dominating query algorithm requires high consumption of time and space to build combined indexes on the attributes, and the query accuracy is low for the data with same attribute values. To solve these problems, a Ranking-k algorithm was given in this paper. The proposed Ranking-k algorithm is a new subspace dominating query algorithm combining the B+-trees with probability distribution model. Firstly, the ordered lists for each data attribute were constructed by the B+-trees. Secondly, the round-robin scheduling algorithm was used to scan ordered attribute lists satisfying skyline criterion.Some candidate tuples were generated and k end tuples were obtained. Thirdly, the dominated scores of end tuples were calculated by using the probability distribution model according to the generated candidate tuples and end tuples. Through iterating the above process, the optimal query results were obtained. The experimental results show that the overall query efficiency of the proposed Ranking-k algorithm is improved by 94. 43% compared with the Basic-Scan Algorithm( BSA) and by7. 63% compared with the Differential Algorithm( DA), and the query results of Ranking-k algorithm are much closer to theoretical values in comparison of the Top-k Dominating with Early Pruning( TDEP) algorithm, BSA and DA.
出处 《计算机应用》 CSCD 北大核心 2015年第1期108-114,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61303127) 国家科技支撑计划项目(2013BAH32F02 2013BAH32F03) 国防重点学科实验室项目(13zxnk12) 四川省教育厅重点项目(13ZA0169) 四川省苗子工程资助项目(2014-043) 西南科技大学研究生创新基金资助项目(14ycx057)
关键词 TOP-K dominating 子空间 Ranking-k算法 有序列表 轮询调度算法 Top-k dominating subspace Ranking-k algorithm sorted list round-robin scheduling algorithm
  • 相关文献

参考文献15

  • 1FAGIN R, LOTEM A, NAOR M. Optimal aggregation algorithms for middleware [ C]// PODS'01: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM, 2001:102-113. 被引量:1
  • 2VAGELIS H, NICK K, PAPAKONSTANTINOU Y. PREFER: a system for the efficient execution of multi-parametric ranked queries [ C]//Proceeding of the 2001 ACM SIGMOD International Confer- ence on Management of Data. New York: ACM, 2001:259 -270. 被引量:1
  • 3BORZSONYI S, KOSSMANN D, STOCKER K. The skyline opera- tor [ C]// Proceedings of the 17th International Conference on Data Engineering. Piscataway: IEEE, 2001:421-430. 被引量:1
  • 4PAPADIAS D, TAO Y, FU G, et al. Progressive skyline computa-tion in database systems [ J]. ACM Transactions on Database Sys- tems, 2005, 30(1): 41-82. 被引量:1
  • 5YIU M, MAMOULIS N. Efficient processing of Top-k dominating queries on multi-dimensional data [ C]// VLDB'07: Proceedings of the 33rd International Conference on Very Large Data Bases. [ S. 1. ] : VLDB Endowment, 2007:483 -494. 被引量:1
  • 6YIU M, MAMOULIS N. Multi-dimensional Top-k dominating que- ries [ J]. The International Journal on Very Large Data Bases, 2009, 18(3): 695-718. 被引量:1
  • 7KONTAKI M, PAPADOPOULOS Y. Continuous Top-k dominating queries [ J]. IEEE Transactions on Knowledge and Data Engineer- ing, 2010, 24(5): 840-853. 被引量:1
  • 8ZHANG W, LIN X, ZHANG Y, et al. Threshold-based probabilis- tic Top-k dominating queries [ J]. The International Journal on Very Large Data Bases, 2010, 19(2): 283 -305. 被引量:1
  • 9TIAKAS E, PAPADOPOULOS A N, MANOLOPOULOS Y. Pro- gressive processing of subspace dominating queries [ J]. The Interna- tional Journal on Very Large Data Bases, 2011, 20(6): 921 -948. 被引量:1
  • 10韩希先,杨东华,李建中.TKEP:海量数据上一种有效的Top-K查询处理算法[J].计算机学报,2010,33(8):1405-1417. 被引量:16

二级参考文献22

  • 1Korn Flip,Pagel Bernd-Uwe,Faloutsos Christos.On the ‘Dimensionality Curse' and the ‘Self-Similarity Blessing'.IEEE Transactions on Knowledge and Data Engineering,2001,13(1):96-111. 被引量:1
  • 2Fagin Ronald,Lotem Amnon,Naor Moni.Optimal aggregation algorithms for middleware//Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems(PODS'01).California,USA,2001:102-113. 被引量:1
  • 3Fagin Ronald,Lotem Amnon,Naor Moni.Optimal aggregation algorithms for middleware.Journal of Computer and System Sciences,2003,66(4):614-656. 被引量:1
  • 4Mamoulis Nikos,Cheng Kit Hung,Yiu Man Lung,Cheung David W.Efficient aggregation of ranked inputs//Proceedings of the 22nd International Conference on Data Engineering(ICDE'06).Atlanta,GA,USA,2006:72-83. 被引量:1
  • 5Mamoulis Nikos,Yiu Man Lung,Cheng Kit Hung,Cheung David W.Efficient top-k aggregation of ranked inputs.ACM Transactions on Database Systems(TODS),2007,32(3):19. 被引量:1
  • 6Pang HweeHwa,Ding Xuhua,Zheng Baihua.Efficient processing of exact top-k queries over disk-resident sorted lists.VLDB Journal,2010,19(3):437-456. 被引量:1
  • 7Fagin Ronald,Kumar Ravi,Sivakumar D.Efficient similarity search and classification via rank aggregation//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD'03).San Diego,California,USA,2003:301-312. 被引量:1
  • 8Bloom Burton H.Space/time trade-offs in Hash coding with allowable errors.Communications of the ACM,1970,13(7):422-426. 被引量:1
  • 9Ilyas Ihab F,Beskales George,Soliman Mohamed A.A survey of top-k query processing techniques in relational database systems.ACM Computing Surveys,2008,40(4):11. 被引量:1
  • 10Bruno Nicolas,Chaudhuri Surajit,Gravano Luis.Top-k selection queries over relational databases:Mapping strategies and performance evaluation.ACM Transactions on Database Systems(TODS),2002,27(2):153-187. 被引量:1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部