期刊文献+

利用视觉注意模型和局部特征的遥感影像检索方法 被引量:9

Remote Sensing Imagery Retrieval Method Based on Visual Attention Model and Local Features
原文传递
导出
摘要 利用尺度不变特征变换(scale invariant feature transform,SIFT)算子直接提取遥感影像局部特征进行检索时存在关键点数目多、特征维数高等问题,因此,本文利用视觉注意模型,根据目标显著性的大小从影像上提取显著目标区域,并采用K-means聚类方法对提取的SIFT局部特征进行聚类,得到用于检索的特征向量。实验结果表明,该方法不仅符合人眼的视觉特性,且在降低SIFT关键点数目和特征维数的同时提高了检索精度和检索效率。 SIFT descriptor is widely used for local feature extraction. However, some problems such as large numbers of extracted key points and its high dimension appear when using SIFT to extract local features from remote sensing imagery directly. To solve these prob ems and improve the retrieval results, we use a visual attention model to extract objects using their saliency from remote sensing images. The visual attention model is used to extract salient objects through their saliency from remote sensing images firstly, then we use a K-means algorithm to cluster local features, these results are then used as feature vectors for similarity measures. Some experimental results show that our method not only decreases the number of key points and the dimension of local features, but also improves retrieval results at the same time. It also accords with the human visual system.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2015年第1期46-52,共7页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(61172174) 教育部新世纪优秀人才基金资助项目(NCET-12-0426) 湖北省自然科学基金杰青资助项目(2013CFA024)~~
关键词 SIFT 视觉注意模型 目标显著性 局部特征 K-MEANS聚类 SIFT visual attention model object saliency local features K-means
  • 相关文献

参考文献20

  • 1程起敏..基于内容的遥感影像库检索关键技术研究[D].中国科学院遥感应用研究所,2004:
  • 2程起敏,杨崇俊,邵振峰.基于多进制小波变换的渐进式纹理图像检索[J].武汉大学学报(信息科学版),2005,30(6):521-524. 被引量:10
  • 3朱先强,黄金才,邵振峰,程光权.一种定义感兴趣局部显著特征的新方法及其在遥感影像检索中的应用[J].武汉大学学报(信息科学版),2013,38(6):652-655. 被引量:4
  • 4Wang M, Wan O M, Gu L B, et al. Remote-sens- ing Image Retrieval by Combining Image Visual and Semantic Features [J]. International Journal of Remote Sensing, 2013, 34(12): 4 200-4 223. 被引量:1
  • 5吴锐航,李绍滋,邹丰美.基于SIFT特征的图像检索[J].计算机应用研究,2008,25(2):478-481. 被引量:31
  • 6Huang S L, Cai C, Zhang Y. Wood Image Retrieval Using SIFT Descriptor[C]. IEEE International Conference on Computational Intelligence and Soft- ware Engineering, Wuhan, China, 2009. 被引量:1
  • 7Gao K, Lin S, Zhang Y, et al. Attention Model Based SIFT Keypoints Filtration for Image Retrieval [C]. The Seventh IEEE/ACIS International Con- ference on Computer and Information Science, Port- land, USA, 2008. 被引量:1
  • 8Newsam S, Yang Y. Comparing Global and Interest Point Descriptors for Similarity Retrieval in Remote Sensed Imagery[C]. The 15th International Sympo-sium on Advances in Geographic Information Sys terns, Seattle, USA, 2007. 被引量:1
  • 9Newsam S, Yang Y. Geographic Image Retrieval Using Local Invariant Features[J]. IEEE Trans- actions on Oeoscience and Remote Sensing, 2013, 51 (2) :818-832. 被引量:1
  • 10Itti L, Koch C, Niebur E. A Model of Saliency- based Visual Attention for Rapid Scene Analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1 254-1 259. 被引量:1

二级参考文献28

  • 1向友君,谢胜利.图像检索技术综述[J].重庆邮电学院学报(自然科学版),2006,18(3):348-354. 被引量:39
  • 2Kokare M,Chatterji B N,Biswas P K.M-band Wavelet Based Texture Features for Content Based Image Retrieval. Electronics and Electrical Communication Engineering Department, 2002. 被引量:1
  • 3Uller H M, Uller W M, Squire D M, et al.Performance Evaluation in Content-based Image Retrieval: Overview and Proposals. Pattern Recognition Letters,2001,22(5):593-601. 被引量:1
  • 4Chitre Y, Dhawan A P. M-Band Wavelet Discrimination of Natural Textures.Pattern Recognition, 1999,32(5) :773-789. 被引量:1
  • 5Acharyya M, Kundu M K. An Adaptive Approach to Unsupervised Texture Segmentation Using M-Band Wavelet Transform. Signal Processing, 2001,81(7):1337-1356. 被引量:1
  • 6TONG L. Scale-space theory: a basic tool for analyzing structures at different scales[ J] . Journal of Applied Statistics, 1994, 21 ( 2 ) :224- 270 . 被引量:1
  • 7LOW D G. Object recognition from local scale-invariant features [ C] / /Proc of the 7th IEEE International Conference on Computer Vision.Kerkyra, Greece: [ s. n. ] , 1999 : 1150 -1157 . 被引量:1
  • 8LOWE D G. Distinctive image features from sacle-invariant keypoints [ J] . International Journal of Computer Vision , 2004, 60 ( 2) : 91-110. 被引量:1
  • 9JORDAN M I. Properties of kernels and the Gaussian kernel [ M] .Topics in Learning and Decision Making, 2004 . 被引量:1
  • 10ARYA S, MOUNT D M, NETANYAHUN S, et al. An optimal algorithm for approximate nearest neighbor searching[ J] . Journal of the ACM, 1998, 45 ( 6) : 891- 923 . 被引量:1

共引文献42

同被引文献49

  • 1杨福刚,孙同景,庞清乐,孙波.基于SVM和小波的木材纹理分类算法[J].仪器仪表学报,2006,27(z3):2250-2252. 被引量:6
  • 2张男,唐宇,唐波.基于内容的检索技术在遥感图像中的应用[J].系统仿真学报,2006,18(z1):430-432. 被引量:1
  • 3赖祖龙,申邵洪,程新文,张洁.基于图斑的高分辨率遥感影像变化检测[J].测绘通报,2009(8):17-20. 被引量:25
  • 4程起敏.遥感图像检索[M].武汉:武汉大学出版社,2011. 被引量:1
  • 5Zhuang D, Wang S. Content - based image retrieval based on integrating region segmentation and relevance feedback [ C ]//Multimedia Technology ( ICMT ), 2010 Interna- tional Conference on. IEEE, 2010. 被引量:1
  • 6Wang J Z, Li J, Wiederhold G. SIMPLicity:Semantics - sensitive integrated matching for picture libraries [ J ]. Pat- tern Analysis and Machine Intelligence,IEEE Transactions on,2001,23(9) :947 -963. 被引量:1
  • 7LOWED G. Object Recognition From Local Scalein Variant Fea-tures [ C ]//Proceesings of the 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999 : 1150 - 1157. 被引量:1
  • 8YU GANG JIANG, JUN YANG,CHONG-WAH NGO. Represen- tation of Key-point-based Semantic Concept Detection Comprehen- sive Study[J]. IEEE transactions on multimedia,2010,12( 1 ) :42 -53. 被引量:1
  • 9LOWED G. Distinctive Image Features From Scaleinvariant Key- points[ J ]. International Journal of Computer Vision 2004,60 (2) : 90 - 110,. 被引量:1
  • 10YAN KE, RAHUL SUKTHANKAR. PCA-SIFT:A More Distinctive Representation for I.oeal Image Descriptors [ C ]//In : Proceedings of the conference on Computer Vision and Pattern Recognition, Washinaton. USA .2004:511 - 517. 被引量:1

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部