期刊文献+

基于结构张量扩散的改进PDE滤波算法 被引量:3

An improved PDE filtering algorithm based on the structure tensor diffusion
下载PDF
导出
摘要 从扩散的角度分析了图像处理中传统热扩散和PM模型的不足,提出了一种各向异性的改进PDE滤波算法.该算法利用图像的结构张量信息和局部特征,自适应选取扩散系数,在图像平坦区域,具有各向同性扩散;而在图像边缘处,则只沿着切向扩散.实验结果表明,该算法具有良好的滤波性能,在滤波的同时可有效保护边缘细节,对灰度图像特别是医学图像,相对于传统方法,该算法可以获得更好的主观视觉效果和客观性能评价指标. The drawbacks of heat diffusion and PM model are analyzed from the view of diffusion.Then an improved anisotropic filtering algorithm based PDE is proposed.The proposed algorithm can select diffusion coefficients adaptively according to the structure tensor information and local features of the image; in the flat region of the image,diffusion will be executed with equal spread both along the gradient and tangential,while on the edge of the image,diffusion will be executed only along the tangential.The experimental results demonstrate that the proposed algorithm has good filteringperformance,which can preserve edge details effectively during denoising.Meanwhile,for both gray image and medical image,the proposed algorithm is superior to the conventional methods in the aspect of objective performance evaluation and subjective visual effect.
出处 《云南民族大学学报(自然科学版)》 CAS 2015年第1期57-61,共5页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 四川省教育厅一般科研项目(13ZB0098) 四川文理学院大学生科研项目(X2013Z006)
关键词 图像滤波 偏微分方程 各向异性 扩散系数 结构张量 image filtering partial differential equations anisotropy diffusion coefficient structure tensor
  • 相关文献

参考文献15

  • 1姚敏等编著..数字图像处理[M].北京:机械工业出版社,2006:347.
  • 2GONZALEZ R C,WOODS R E.Digital Image processing[M].2nd ed.Beijing:Electronic and Industrial Press,2002. 被引量:1
  • 3FELSBERG.M·Autocorrelation-driven diffusion filtering[J].IEEE Transactions on Image Processing,2011,20(7):1797-1806. 被引量:1
  • 4MOHAMMAD R H,AHMAD M O,WANG Chunyan.An edge-adaptive laplacian kernel for nonlinear diffusion filters[J].IEEE Transactions on Image Processing,2012,21(4):1561-1572. 被引量:1
  • 5KANG Y N.Variational PDE-based image segmentation and inpainting with applications in computer graphics[D].USA,Los Anggeles:University of California,2008. 被引量:1
  • 6WITKIN A.Scale-space filtering[C]//8th International Joint Conference on Artificial Intelligence.Karlsruhe,West Germany,1983:1019-1022. 被引量:1
  • 7PERONA P,MALIK J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(8):629-639. 被引量:1
  • 8冯象初,王卫卫编著..图像处理的变分和偏微分方程方法[M].北京:科学出版社,2009:182.
  • 9GUICHARD F,MOISAN L,MOREL J M.A review of PDE models in image processing and image analysis[J].Journal de Physique IV,2002,92(12):137-154. 被引量:1
  • 10YOU Y L,XU W,Tannenbaum A,et.al.Behavioral analysis of anisotropic diffusion in image processing[J].IEEE Transaction on Image Processing,1996,5(11):1539-1553. 被引量:1

二级参考文献27

  • 1邵文泽,韦志辉.各向异性扩散与M-估计的比较研究[J].计算机工程与应用,2006,42(31):43-45. 被引量:5
  • 2邵文泽,韦志辉.一种非线性数字滤波器的统一设计框架及其性能分析[J].计算机学报,2007,30(1):91-102. 被引量:10
  • 3PERONA P, MALIK J. Scale space and edge detection using anisotropic diffusion [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7) : 629 -639. 被引量:1
  • 4CATTe F, LIONS P-L, MOREL J-M, et al. Image selective smoothing and edge detection by nonlinear diffusion [ J]. SIAM Joumal on Numerical Analysis, 1992, 29(1) : 182 - 193. 被引量:1
  • 5ALVAREZ L, LIONS P-L, MOREL J-M. lmage selective smoothing and edge detection by nonlinear diffusion II [ J]. SIAM Journal on Numerical Analysis, 1992, 29(3) : 845 - 866. 被引量:1
  • 6RUDIN L I. OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992, 60(1/4) : 259 - 268. 被引量:1
  • 7RUDIN L, OSHER S. Total variation based image restoration with free local constraints [ C]//ICIP-94: IEEE International Conference on Image Processing. Washington, DC: IEEE Press, 1994, 1:31 -35. 被引量:1
  • 8COBSON D, VOGEL C. Convergence of an iterative method for total variation denoising [ J]. SIAM Journal on Numerical Analysis, 1997, 34(5) : 1779 - 1791. 被引量:1
  • 9CHANT F, OSHER S, SHEN J. The digital TV filter and nonhnear denoising [J]. IEEE Transactions on Image Processing, 2001, 10 (2): 231 -241. 被引量:1
  • 10GEMAN S, GEMAN D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, PAMI-6 (6) : 721 -741. 被引量:1

共引文献8

同被引文献21

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部