期刊文献+

一类捕食模型解的渐近行为

Asymptotic Behavior of Solutions of a Predator-Prey Model with Predator Saturation and Competition Function
原文传递
导出
摘要 文章讨论了一类边界条件为Neumann边界、带有饱和与竞争项的捕食模型,获得了模型非负常稳态解的存在性和渐近行为的充分条件,即在条件0<k<a/(1+ab)和a≥1/c下,模型存在唯一的非负常稳态解,并且当kb(c+kb2-b)>ac2时,此非负常稳态解是渐近稳定的。由于模型不具有单调性或混拟单调性,因此传统的上下解方法不能直接使用,为此改进了上下解和迭代方法,并结合抛物方程比较原理获得非负常稳态解的渐近行为,此结果表明扩散不影响非负常稳态解的渐近行为。 In this paper, a predator-prey model with predator saturation and competition function response under homogeneous Neumann boundary condition is considered. The sufficient conditions of existence of the nonnegative constant steady states solutions: 0〈k〈a/(1+ab) ,a≥l/c are obtained, and some sufficient conditions:kb(c+kb^2 -b)〉ac^2 to guarantee the asymptotic behavior of the nonnegative constant steady states solutions are given. Since the model which we study hasn't monotonieity or mixed quasi monotonicity, so the traditional upper-lower solutions and iteration methods suit the model. To this end, we improve the upper-lower solutions and iteration method, and integrate with the parabolic equation comparison principle, obtain the asymptotic behavior of the nonnegative constant steady states solutions. The result indicates that the asymptotic behavior of the nonnegative constant steady states solutions is independent of the effect of diffusion.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期76-80,共5页 Journal of Chongqing Normal University:Natural Science
基金 湖北省教育厅项目(No.Q20122504 No.D20122501)
关键词 捕食模型 比较原理 渐近行为 上下解 predator prey model comparison principle asymptotic behavior upper-lower solutions
  • 相关文献

参考文献8

  • 1Cantrell R S,Cosne C.On the dynamics of predator-prey models with th Beddington-DeAngelis functional response[J].Journal of Mathematics Analysis and Application,2001,257:206-222. 被引量:1
  • 2Bazykin A D.Nonlinear dynamics of interacting populations[M].Singapore:World Scientific,1998. 被引量:1
  • 3Wang M X,Wu Q.Positive solutions of a prey-predator model with predator saturation and competition[J].Journal of Mathematical Analysis and Applications,2008,345(2):708-718. 被引量:1
  • 4孟义杰,肖氏武.一类带有饱和与竞争函数项的捕食模型解的稳定性[J].湖北文理学院学报,2012,33(11):8-10. 被引量:2
  • 5叶其孝,李正元,王明新等著..反应扩散方程引论[M].北京:科学出版社,2011:450.
  • 6Wang Y F,Meng Y J.Asymptotic behavior of a competi- tion-diffusion system with time delays[J].Math and Com- put Model,2003,38:509-517. 被引量:1
  • 7Meng Y J,Wang Y F.Asymptotic behavior of a competi- tion-diffusion asymptotic behavior of a predator-prey sys- tem with time delays[J].E J Diff Equa,2005,131;1-11. 被引量:1
  • 8Pao C V.Nonlinear parabolic and elliptic equations[M].New york:Plenum Prevss,1992. 被引量:1

二级参考文献4

  • 1CANTRELL R S, COSNER C. On the dynamics of predator-prey models with the Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2001, 257(1): 206-222. 被引量:1
  • 2BAZYKIN A D, KHIBNIK ALEKSANDR IOSIFOVICH, KRAUSKOPF BERND. Nonlinear Dynamics of Interacting Populations[M]. Singapore: World Scientific, 1998. 被引量:1
  • 3WANG M X, WU Q. Positive solutions of a prey-predator model with predator saturation and competition[J]. Mathematical Analysis and Applications, 2008, 345(2): 708-718. 被引量:1
  • 4叶其孝,李正元,王明新,等.反应扩散方程引论[M].2版.北京:科学出版社,2011. 被引量:8

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部