期刊文献+

基于收费数据的高速公路交通拥挤自动判别方法 被引量:5

The automatic traffic congestion identification of freeway based on charging date
下载PDF
导出
摘要 针对高速公路交通拥挤日益严重的现象,通过对收费数据的深层挖掘和高效利用,提出了基于滚动时间序列的行程时间数据合成方法,以此为基础构建了交通拥挤指数,并基于交通拥挤指数的变化特征对拥挤持续时间进行了在线估计;结合收费站布局的时空特征,设计了基本路段和复合路段融合的高速公路交通拥挤自动判别方法.实证分析表明,该方法在判别率提高到96.52%,误判率降低到0.43%的同时,判别时间减少了74%,而且收费数据的获取成本为零. In view of increasingly serious traffic congestion on freeway, a synthesis method of travel time date was proposed based on the rolling time sequence and charging data, and on which this paper built a traffic congestion index and estimated the duration time according to the changing characteristics of the index. Moreover, taking the spatial and temporal characteristics of toll station layout into account, a method of automatic traffic congestion identification on freeway was designed by merging basic links with composite links. Empirical analysis shows that this method can improve the recognizing rate to 96.52%and reduce the false recognizing rate to 0.43%, at the same time, the recognizing time is declined by 74%, and the cost of charging date is zero.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第12期108-113,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(51278257) 浙江省自然科学基金(LY12F01013) 高等学校博士学科点专项科研基金(20110061110034)
关键词 交通工程 数据合成 交通拥挤 自动判别 收费数据 traffic engineering data synthesis traffic congestion automatic identification charging date
  • 相关文献

同被引文献43

  • 1殷俊杰,丁宏飞,薄雾,钟媚.基于模糊聚类的城市快速路交通流状态划分[J].重庆交通大学学报(自然科学版),2013,32(4):652-655. 被引量:8
  • 2Li C S,Chen M C. A data mining based approach for travel time prediction in reeway with non-recurrent congestion[J]. Neuro Computing, 2014,133 (10) : 74-83. 被引量:1
  • 3Zhou H Y, Shingo M B. Backward time related associ- ation rule mining with database rearrangement in traf- fic volume prediction[C]//lEEE. IEEE International Conference on Systems, Man, and Cybernetics. San Antonio: IEEE,2009 : 1047-1052. 被引量:1
  • 4Zhou H Y,Shingo M B,Mainali M K,et al. General- ized association rules mining with multi-branches full- paths and its application to traffic volume prediction [C]//Fukuoka International Congress Center. ICROS-SICE International Joint Conference 2009. Fukuoka: SICE, 2009 147-152. 被引量:1
  • 5Zhou H Y, Mabu S, Li X N, et al. Generalized rule ex- traction and traffic prediction in the optimal route search[C]//IEEE. IEEE World Congress on Com- putational Intelligence, Barcelona: IEEE, 2010: 2625-2632. 被引量:1
  • 6Agrawal R S R. Fast algorithm for mining association rules[C]//Morgam K. In Proceedings of 1994 Inter- national Conference on Very Large Databases. Santia- go : DBLP, 1994 : 487-499. 被引量:1
  • 7Xiong C Q,Chen S B,Ding M. Association rules min- ing for discussion information in group deliberation support system[C]//IEEE. Proceedings of the 8th In- ternational Conference on Computer Science and Edu- cation. Colombo : IEEE, 2013 : 67-70. 被引量:1
  • 8田民,刘思峰,卜志坤.灰色关联度算法模型的研究综述[J].统计与决策,2008(1):24-27. 被引量:179
  • 9Xiang G Y, Niu S F, An D C. The method of traffic congestion i-dentification and spatial and temporal dispersion range estimation[A]. International Asia Conference on Informatics in Control? Au-tomation and Robotics [C]. 2010, 1: 36 - 39. 被引量:1
  • 10Srinivasan D,Sanyal S,Sharma V. Freeway incident detection u-sing hybrid neural network [J]. IEEE Transaction on IntelligentTransportation System, 2007,1 (4) : 249 - 259. 被引量:1

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部