摘要
在整数集Z上定义了模n同因关系,得到整数的模n同因分类Z(n).证明了:Z(n)的元素个数是T(n)(其中T(n)是n的正因数个数);Z(n)关于乘法[a][b]=[ab]作成以[0]为零元,[1]为单位元的交换半群,且除[1]外其余的元都没有逆元;在不等式T(n)+φ(n)≤n+1中,当且仅当n=1,4,p(p为素数)时等号成立,其中φ(n)是欧拉函数.
An equivalent divisor relation based on the modulus of integer n (mod n) is defined in the integer set Z. Amod n equi-divisor classification Z(n) of the integer n is therefore obtained. It is proved that the number of elements in Z(n) is T (n), where T(n) is the number of positive divisors of n. Based on the multiplication [a] [b] = [ab], Z(n) forms a commutative semi-group, in which [0] is the zero element, [1] is the unit element and the only element having its inverse element. For the inequalityT (n)+φ (n) ≤n+1, the equality holds true if and Only if n=1, 4p(p is a prime number and φ(n) is an Euler function).
出处
《四川职业技术学院学报》
2014年第6期143-145,共3页
Journal of Sichuan Vocational and Technical College
基金
四川省教育厅自然科学重点项目(编号:11ZA263)研究成果之一
关键词
整数
模n同因分类
正因数个数
交换半群
欧拉函数
Integers
mod n equi-divisor classification
the number of positive divisors
commutative semi-group
Euler function