期刊文献+

MWCNT@SiO2纳米同轴电缆的制备及储锂性能

Preparation and Lithium Storage Performance of MWCNT@SiO_2 Coaxial Nanocables
下载PDF
导出
摘要 以多壁碳纳米管(MWCNT)为模板,通过正硅酸乙酯(TEOS)的水解缩聚反应制得MWCNT@SiO2纳米同轴电缆.采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)和电化学测试对样品的形貌、结构及电化学性能进行表征.结果表明,MWCNT表面包覆了一层厚度均匀的多孔SiO2层,利于其获得较好的储锂性能.作为锂离子电池负极材料,MWCNT@SiO2纳米同轴电缆表现出了较高的比容量和较好的循环性能.在100 m A/g电流密度下经过80次循环,MWCNT@SiO2纳米同轴电缆的放电比容量仍高达431.7 m A·h/g,高于石墨材料的理论比容量(372 m A·h/g). MWCNT@SiO2 coaxial nanocables were prepared via a facile hydrolysis-condensation process of tetraethyl orthosilicate( TEOS) with multi-walled carbon nanotubes( MWCNT) as templates. The morphology, structure and electrochemical performance of the nanohybrids were characterized by transmission electron mi- croscopy( TEM) , scanning electron microscopy ( SEM ) , and electrochemical measurements. It is indicated that the MWCNT templates have been fully wrapped by SiO2 layer with uniform thickness and porous nature, which is beneficial for the enhanced Li-storage capabilities of the MWCNT@ SiO2 nanohybrids. When evaluated as anode materials for Li-ion battery, the MWCNT@SiO2 coaxial nanocables exhibit high specific capacities and excellent cycling performance. For example, the MWCNT@SiO2 coaxial nanocables are able to deliver a high discharge capacity of 431. 7 mA·h/g after 80 cycles at a current density of 100 mA/g, which is higher than the theoretical capacity of graphite(372 mA·;h/g). The facile synthetic methodology and en- hanced lithium-storage performances of the MWCNT@SiO2 coaxial nanocables make it an ideal anodic candi- date for high-energy and long-life Li-ion batteries( LIBs) .
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2015年第1期175-179,共5页 Chemical Journal of Chinese Universities
基金 江苏省产学研前瞻性研究项目(批准号:BY2013001-01) 江苏省自然科学基金(批准号:BK20130900) 江苏省高校自然科学基金(批准号:13KJB150026)资助~~
关键词 锂离子电池 负极材料 MWCNT@SiO2 纳米同轴电缆 水解缩聚反应 Li-ion battery Anode material MWCNT@ SiO2 Coaxial nanocable Hydrolysis-condensation reaction
  • 相关文献

参考文献24

  • 1Goodenough J. B. , Park K. S. , J. Am. Chem. Soc., 2013, 135(4). 被引量:1
  • 2Li H. , Wang Z. ,Chen L. , Huang X. , Adv. Mater. , 2009, 2l(45). 被引量:1
  • 3Cheng F. , Liang J. , Tao Z. , Chen J. , Adv. Mater. , 2011, 23(15). 被引量:1
  • 4Manthiram A. , J. Phys. Chem. Lett. , 2011, 2(3), 176-184 , 1167-1176 4593--4607 1695-1715. 被引量:1
  • 5WuX. L., GuoY. G., WanL. J., Chem. Eur. J.,2013,8(9), 1948-1958. 被引量:1
  • 6Li J. , Wu P. , Tang Y. , Xu X. , Zhou Y. , Chen Y. , Lu T. , Cryst. Eng. Comm. , 2013, 15(47), 10340-10345. 被引量:1
  • 7Wu P. , Du N. , Zhang H. , Yu J. , Yang D. , J. Phys. Chem. C, 2010, 114(51), 22535-22538. 被引量:1
  • 8Wu P. , Du N. , Zhang H. , Yu J. , Yang D. , J. Phys. Chem. C, 2011, 115(9), 3612-3620. 被引量:1
  • 9吴平,杜宁,张辉,杨德仁,陆天虹.锂离子电池用α-Fe2O3-Ag复合纳米棒负极材料的制备及储锂性能[J].高等学校化学学报,2013,34(3):668-673. 被引量:4
  • 10Su X. , Wu Q. , Li J. , Xiao X. , Lott A. , Lu W. , Sheldon B. W. , Wu J. , Adv. Energy Mater. , 2014, 4(1), 1300882. 被引量:1

二级参考文献27

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部