期刊文献+

求解武器目标分配问题的改进粒子群算法 被引量:11

An Improved Particle Swarm Algorithm for Weapon Target Assignment Problem Solving
下载PDF
导出
摘要 在建立多种类型武器目标分配模型的基础上,提出了一种求解该模型的改进粒子群算法。首先,定义粒子聚焦距离变化率,使惯性权重依据聚焦距离变化率自适应调整;其次,采用速度最大值线性递减的策略平衡算法收敛精度与全局寻优能力之间的矛盾;最后,粒子替换策略使算法改善了因自适应惯性权重的引入而造成收敛速度变慢的问题。仿真结果表明,提出模型和算法合理有效,算法收敛快,适合求解各种种群规模的武器目标分配问题。 On the basis of establishing various types of weapon target assignment models,an improved particle swarm algorithm is proposed to solve the model. First of all,inertia weight is becoming adaptive expressed as functions of focus distance changing rate by defining them.Second,the strategy balancing algorithm of maximum speed linear regression is adopted to balance the contradiction between convergence accuracy and the global optimization ability; Finally,particle replacement strategy improves the algorithm the slow convergence speed problem caused by the introduction of self-adaptive inertia weight. Simulation results show that the proposed model and algorithm are reasonable and effective with fast converges,which are suitable for solving weapon target assignment problem of all kinds of population size.
出处 《火力与指挥控制》 CSCD 北大核心 2014年第12期58-61,共4页 Fire Control & Command Control
基金 国家自然科学基金(61004127) 山西省自然科学基金资助项目(2013011017-7)
关键词 粒子群优化算法(PSO) 聚焦距离变化率 自适应惯性权重 速度最大值线性递减 粒子替换 particle swarm optimization focus distance changing rate self-adaptive inertia weight maximum speed linear regression particle replacement
  • 相关文献

同被引文献118

引证文献11

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部