期刊文献+

基于语义特征的模糊聚类算法研究

A fuzzy clustering algorithm based on semantic features
下载PDF
导出
摘要 对海量数据进行聚类,从中获取有价值的隐含知识,已经成为一项迫切的需求。传统的基于词频或距离的文本聚类技术在准确度方面存在较大差距。引入文本语义信息的聚类方法,提高了聚类的准确度。实验结果表明,基于语义特征的模糊聚类算法具有较好的聚类效果。 Cluster of massive data, gain valuable implicit knowledge, has become an urgent demand. A wide gap between traditional texts clustering technique based on word frequency or distance exists. Using the text semantic information clustering methods improve the accuracy of clustering. This method implements word clustering by calculating text semantic information. The experiments show that the proposed method clustering trends to perform better than the traditional method.
出处 《信息技术》 2014年第12期121-123,128,共4页 Information Technology
基金 辽宁省社科联2014年度辽宁经济社会发展立项课题(2014LSLKTDGLX-02)
关键词 语义特征 文本挖掘 聚类 K-均值 semantic features text mining cluster k-means
  • 相关文献

参考文献10

  • 1Antonio Gulli, A Signorini. The indexable web is more than 11.5 billion pages[ Z/OL]. WWW 2005:902 -903. 被引量:1
  • 2Han Jia-wei,Micheline Kamber.Data Mining:Concepts and Techniques[M].Morgan Kaufmann Publishers,2001. 被引量:1
  • 3Liu J,Lee J P,Li L.et al.Online clustering algorithms for radar emitter classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005(27):1185-1196. 被引量:1
  • 4Van Dyke Parunak H,Richard Rohwer,Theodore C Belding,et al.Dynamic Decentralized Any-Time Hierarchical Clustering[C]//29th Annual International ACM SIGIR Conference on Research&Development on Information Retrieval,Seattle,USA,Aug.6-11,2006. 被引量:1
  • 5Hans-Peter Kriegel,Martin Pfeifle.Hierarchical Density-Based Clustering of Uncertain Data[C]//proceedings of the Fifth IEEE International Conference on Data Mining(ICDM 2005):689-692. 被引量:1
  • 6Mauro Falanga,Liao Wei-keng,Liu Ying,et al.A Grid-based Clustering Algorithm using Adaptive Mesh Refinement[C]//Proceedings of the 7th Workshop on Mining Scientific and Engineering Datasets,April 2004. 被引量:1
  • 7Law M,Alexander Topchy,Anil K Jain.Model-based Clustering With Probabilistic Constraints[C]//proceedings of the Fifth SIAM International Conference on Data Mining(SDM 2005). 被引量:1
  • 8Achtert E,Kriegel H P,Pryakhin A,et al.Hierarchical DensityBased Clustering for Multi-Represented Objects[M]//proceedings of Workshop on Mining Complex Data(MCD 2005),Houston,TX,USA. 被引量:1
  • 9Song D,Bruza P D,Huang Z,et al.Classifying Document Titles Based on Information Inference[C]//proceedings of the 14th International Symposium on Methodologies for Intelligent Systems,Japan,2003:297-306. 被引量:1
  • 10Hynek J,Jezek K,Rohlik O.Short Document Categorization-Itemsets Method[C]//PKDD 4-th European Conference on Principles and Practice of Knowledge Discovery in Databases,Workshop Machine Learning and Textual Information Access.Lyon,France,Sept.2000:14-19. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部