摘要
在Menger PM-空间中,引入广义β-可容许映射的概念.在不要求两映射可交换的情况下,利用迭代法,建立了广义β-可容许映射的二元重合点定理.获得了一些新的结果,推广和改进了相关文献中的不动点定理和二元重合点定理.最后,给出了主要结果的一个应用.
In this paper, the new notion of generalized β-admissible mappings in Menger probabilistic metric spaces is introduced. We use the iterative method to establish some coupled coincidence point theorems for generalized β-admissible mappings in complete probabilistic metric spaces, where two mappings do not need to be commutative. Some new results are obtained, which generalize some fixed point theorems and coupled coincidence point theorems in the recent corresponding literatures. Finally, an application is given to support our main results.
出处
《纯粹数学与应用数学》
CSCD
2014年第5期520-533,共14页
Pure and Applied Mathematics
基金
国家自然科学基金(11361042
11071108
11461045)
江西省自然科学基金(20132BAB201001
2010GZS0147)
关键词
MENGER
PM-空间
二元重合点
β-可容许映射
相容映射
Menger probabilistic metric spaces
coupled coincidence point
β-admissible mappings
compatible mappings