期刊文献+

随机时变路网下的城市应急服务车辆路径分析 被引量:8

Vehicle routing analysis of urban emergency service in stochastic time-dependent networks
下载PDF
导出
摘要 针对城市应急服务车辆(110、119、120等)的最优路径选择问题及路网的随机性与时变性,利用鲁棒优化理论,考虑路网在最坏情况下的行程时间,建立了随机时变条件下的应急车辆路径选择模型,并对Dijkstra算法进行改进,将算法的路阻矩阵进行实时更新,以在时变条件下实现对路径选择模型的求解。经算例分析表明,该模型能有效解决随机时变路网环境下的应急车辆最优路径问题,与基于概率分布的期望行程时间最短的方法相比,该模型拥有更高的鲁棒性和易操作性。 Concerning the optimal paths planning of urban emergency service vehicles( such as 110, 119, 120, etc.)and stochastic time-dependent networks, using the robust optimization theory, the travel time of links in the worst case was considered and a route choice model in the stochastic time-dependent networks was proposed in this paper. The Dijkstra algorithm was improved with updating the impedance matrix in real time to solve this choice model under time-dependent networks. The experimental results indicate that this model can effectively solve the optimal paths planning problem of emergency vehicles in stochastic time-dependent networks. Compared with the method of searching the route of which expected travel time is the shortest based on distribution estimation, this method has higher robustness and feasibility.
出处 《计算机应用》 CSCD 北大核心 2014年第A02期317-319,共3页 journal of Computer Applications
基金 国家自然科学基金青年科学基金资助项目(71001079)
关键词 应急车辆 随机时变路网 鲁棒优化 最优路径 emergency vehicle stochastic time-dependent network robust optimization optimal path
  • 相关文献

参考文献12

二级参考文献49

共引文献36

同被引文献52

  • 1彭勇,谢禄江,刘松.时变单车路径问题建模及算法设计[J].重庆交通大学学报(自然科学版),2013,32(2):263-266. 被引量:7
  • 2段征宇.基于动态交通信息的车辆路径规划问题研究[D].同济大学,2009,4(2):50-59. 被引量:3
  • 3RAWLS C G, TURNQUIST M A. Pre-positioning of emergency sup- plies for disaster response[ J]. Transportation Research Part B: Methodological, 2010, 44(4) : 521 - 534. 被引量:1
  • 4JIN R, RUAN N, XIANG Y, et al. A highway-eentric labeling ap- proach for answering distance queries on large sparse graphs [ C]/! Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2012:445 -456. 被引量:1
  • 5TAO Y, SHENG C, PEI J. On k-skip shortest paths[ C]/! Proceed- ings of the 2011 ACM SIGMOD International Conference on Manage- ment of Data. New York: ACM, 2011:421 -432. 被引量:1
  • 6WU L, XIAO X, DENG D, et al. Shortest path and distance que- ries on road networks: an experimental evaluation[ J]. Proceedings of the VLDB Endowment, 2012, 5(5) : 406 - 417. 被引量:1
  • 7ANDY D, HUI M, XIAO X, et al. Shortest path and distance que- ries on road networks: towards bridging theory and practice[ C]// Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2013:857 -868. 被引量:1
  • 8XIAO P, XU Y, SU B. Finding an anti-risk path between two nodes in undirected graphs[ J]. Journal of Combinatorial Optimization, 2009, 17(3):235 -246. 被引量:1
  • 9JAY M, SANJEEV S. Faster algorithm to find anti-risk path between two nodes of an undirected graph[ J]. Journal of Combinatorial Opti- mization, 2014, 27(4) : 798 -807. 被引量:1
  • 10HALL R W. The fastest path through a network with random time-dependenttravel times[J3. Transportation Science, 1986,20(3) : 182-188. 被引量:1

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部