期刊文献+

基于多重属性的P2P网络节点重要性度量方法 被引量:1

P2P network node importance measurement method based on multi-attribute
下载PDF
导出
摘要 P2P网络中的节点重要性评价在实际应用中有重要意义。现有的一些重要性评价指标如度、紧密度等存在度量结果较为片面等缺点,单一指标并不能有效地对P2P网络中的节点重要性进行度量。针对此问题,提出了一种基于多重属性的综合度量指标。以节点度作为对比基础,计算多个度量指标与节点度指标的肯德尔相关系数,通过分析多个指标之间的内在关联性,最终选择节点度、介数、K-核和Page Rank四个属性来进行节点重要性的综合度量。通过真实的P2P网络进行实验验证,结果表明,相对原有单一度量指标和现有的综合度量指标,该综合指标更能够有效地对P2P网络中的节点重要性进行度量,而且具有较强的普适性,可以应用到大多数P2P网络中。 P2P network node importance measurement is of importance in practical application. Due to that the evaluation results based on some existing node importance evaluation metrics have the shortcoming of one-sidedness, therefore the importance of nodes in P2 P network can't be evaluated effectively by single metric. To solve this problem, a comprehensive metric based on multi-attribute was proposed. Node degree was selected as the basis of the comparision, the inherent relevance between various metrics was firstly analyzed through the Kendall correlation coefficient compution and a comprehensive evaluation metric based on degree, betweenness, K-core and Page Rank were used to compute the comprehensive metric.Through the experiment verification by real P2 P network, the comprehensive evaluation metric can more effectively evaluate the node importance in P2 P network when compared to original single metrics and existing comprehensive metrics. Also the comprehensive metrics has so strong universality that can be used to most other P2 P networks.
出处 《计算机应用》 CSCD 北大核心 2014年第A02期7-10,19,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61170286 61202486)
关键词 节点度 节点紧密度 节点重要性 多重属性 P2P网络 node degree node closeness node importance multi-attribute P2P network
  • 相关文献

参考文献14

  • 1LYU L, MEDO M, YEUNG C H, et al. Recommender systems[ J]. Physics Reports, 2012, 519(1) : 1 -49. 被引量:1
  • 2吕天阳,朴秀峰,谢文艳,黄少滨.基于传播免疫的复杂网络可控性研究[J].物理学报,2012,61(17):135-143. 被引量:11
  • 3STUTZBACH D, REJAIE R. Characterizing today' s Gnutella topology, CIS-TR-04-02 [ R ]. Eugene : University of Oregon, Department of Computer Science, 2004. 被引量:1
  • 4于会,刘尊,李勇军.基于多属性决策的复杂网络节点重要性综合评价方法[J].物理学报,2013,62(2):46-54. 被引量:146
  • 5FREEMAN L C, BORGATTI S P, WHITE D R. Centrality in valued graphs : A measure of betweenness based on network flow [J]. Social Networks, 1991, 13(2): 141-154. 被引量:1
  • 6da SILVA R A P, VIANA M P, da FONTOURA COSTA L. Predicting epidemic outbreak from individual features of the spreaders [ J ]. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012,2012(7): P07005. 被引量:1
  • 7HOU B, YAO Y, LIAO D. Identifying all-around nodes for spreading dynamics in complex networks [ J ]. Physica A: Statistical Mechanics and its Applications, 2012, 391 (15): 4012-4017. 被引量:1
  • 8CODD E F. A relational model of data for large shared data banks [J]. Communications of the ACM, 1970, 13(6) : 377 -387. 被引量:1
  • 9刘建国,任卓明,郭强,汪秉宏.复杂网络中节点重要性排序的研究进展[J].物理学报,2013,62(17):1-10. 被引量:174
  • 10AYTA~ Y , FERHATOSMANOGLU H , ULUSOY O . Link recommendation in P2P social networks [ EB/OL ]. [ 2014-05-01 ]. http ://www. cs. bilkent, edu. tr/- oulusoy/woss12, pdf. 被引量:1

二级参考文献83

共引文献373

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部