期刊文献+

利用介质阻挡探针法测量大气压氦等离子体射流电子密度

Measurement of electron density in the atmospheric pressure helium plasma jet by using a dielectric probe
下载PDF
导出
摘要 分别利用电子的漂移速度和等离子体的传播速度计算了大气压下氦等离子体射流的电子密度。通过介质阻挡探针测量氦等离子体的射流电流,再利用电压探头测量等离子体放电电流信号,计算出电子的漂移速度和等离子体的传播速度。实验结果表明,两种方法计算出来的结果相当,射流轴向上的氦等离子体电子密度值约为1011cm?3,并随着外加电压的增加而增加,沿着轴向方向,射流电子密度维持在一个稳定值范围内。用介质阻挡探针测量得到的电子密度与用罗科夫斯基线圈及朗缪尔探针测量得到的大气压非热氦等离子体射流的电子密度值一致,比用微波天线测量的值低一个数量值。 The electron densities in the atmospheric pressure helium plasma were calculated by means of electron drift velocity and the jet velocity respectively. The electron velocity and jet velocity can be calculated by means of helium plasma jet current measured by a dielectric probe and plasma discharge current signal measured by voltage probes. The results show that the estimated electron densities of the helium plasma jet calculated from electron drift velocity and the jet velocity are in the order of 10^11cm^-3 and they increase with applied voltage. There is a little fluctuation in the value of the electron density along the jet axis of the plasma. This result is the same as the measured electron density in atmospheric pressure helium non-thermal plasma jet by using a Rogowski coil and a Langmuir probe. This is in one order lower than the electron density measured by microwave antenna.
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2014年第4期374-378,共5页 Nuclear Fusion and Plasma Physics
基金 国家自然科学基金资助项目(11105093) 深圳市科技计划项目(JC201005280485A)
关键词 大气压氦等离子体 冷等离子体射流 介质阻挡探针 射流电子密度 Atomspheric pressure helium plasma Cold plasma jet Dielectric probe Jet electron density
  • 相关文献

参考文献17

  • 1Nowling G R,Babayan S E,Jankovic V,et a1.Remote plasma enhanced chemical vapour deposition of silicon nitride at atmospheric pressure[J].Plasma Sources Science and Technology,2002,11(1):97-103. 被引量:1
  • 2Jeong J Y,Babayan S E,Sehiitze A,et a1.Etching polyimide with a nonequilibrium atmosp-heric-pressure plasma jet[J].Journal of Vacuum Science&Technology A,1999,17(5):2581-2585. 被引量:1
  • 3Li G,Li H P,Wang L Y,et a1.Genetic effects of radio-frequency,atmospheric pressure glow discharges with thelium[J].Appl.Phys.Lett.,2008,92(22):221504. 被引量:1
  • 4Li H P,Li G,Sun W T,et a1.Radio-frequency,atmospheric pressure glow discharges:producing methods,characteristics and applications in biomedical fields[C].AIP Conference Proceeding,2008.584-591. 被引量:1
  • 5Herrmann H W,Henins I,Park J,et a1.Decontam-ination of chemical and biological warfare(CBW)agents using an atmospheric pressure plasma jet(APPJ)[J].Phys.Plasmas,1999,6(5):2284-2289. 被引量:1
  • 6Fridman G,Friedman G,Gutsol A,et a1.Applied plasma medicine[J].Plasma Processes and Polymers,2008,5(6):503-533. 被引量:1
  • 7郑培超,王金梅,胡章芳,郝宏刚,王艳.大气压微等离子体射流对聚酰亚胺薄膜的表面改性[J].高电压技术,2010,36(6):1542-1546. 被引量:22
  • 8卢新培.等离子体射流及其医学应用[J].高电压技术,2011,37(6):1416-1425. 被引量:87
  • 9于清旋..大气压针—板DBD发射光谱的斯塔克展宽特性[D].大连海事大学,2012:
  • 10李成榕,王新新.大气压下的辉光放电[J].高电压技术,2002,28(B12):41-43. 被引量:30

二级参考文献54

  • 1狄剑锋.织物表面能的计算方法及其比较[J].纺织导报,2005(9):77-79. 被引量:7
  • 2孙姣,张家良,王德真,马腾才.一种新型大气压毛细管介质阻挡放电冷等离子体射流技术[J].物理学报,2006,55(1):344-350. 被引量:18
  • 3Mohamed A A, Suddala S, Malik M A, et al. Ozone generation in an atmospheric pressure micro-plasma jet in air[C]// The 31st IEEE Int Conf on Plasma Sci. Baltimore, Maryland, USA: IEEE, 2004. 被引量:1
  • 4Teschke M, Kedzierski J, Finantu-Dinu E G, et al. High-speed photographs of a dielectric barrier atmospheric pressure plasma jet[J]. IEEE Transactions on Plasma Science, 2005, 33 (2): 310-311. 被引量:1
  • 5Cheng C, Zhang L, Zhan R. Surface modification of polymer fi- bre by the new atmospheric pressure cold plasma jet[J]. Surface & Coatings Tech, 2005, 200(24): 6659-6665. 被引量:1
  • 6O'Connell D, Cox L J, Hyland W B, et al. Cold atmospheric pressure plasma jet interactions with plasmid DNA[J]. Applied Physics Letters, 2011, 98(4): 043701. 被引量:1
  • 7Jeong J Y, Babayan S E, Tu V J, et al, Etching materials with an atmospheric-pressure plasma jet[J]. Plasma Source Science Technology, 1998, 7(3): 282-285. 被引量:1
  • 8Stoffels E, Kieft I E, Sladek R E J. Superficial treatment of mammalian ceils using plasma needle[J]. Journal of Physics D: Applied Physics, 2003, 36(23): 2908-2913. 被引量:1
  • 9Sladek R E J, Stoffels E, Walraven R, et al. Plasma treatment of dental eavities: a feasibility study[J]. IEEE Transactions on Plasma Science, 2004, 32(4) : 1540-1543. 被引量:1
  • 10Leveille V, Coulombe S. Design and preliminary characteriza- tion of a miniature pulsed RF APGD torch with downstream in- jection of the source of reactive species[J]. Plasma Sources Sci- ence Technology, 2005, 14(3): 467-476. 被引量:1

共引文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部