期刊文献+

Self-similar behavior for multicomponent coagulation

Self-similar behavior for multicomponent coagulation
下载PDF
导出
摘要 Self-similar behavior for the multicomponent coagulation system is investigated analytically in this paper. Asymptotic self-similar solutions for the constant kernel, sum kernel, and product kernel are achieved by introduction of different generating functions. In these solutions, two size-scale variables are introduced to characterize the asymptotic distribution of total mass and individual masses. The result of product kernel (gelling kernel) is consistent with the Vigli-Ziff conjecture to some extent. Furthermore, the steady-state solution with injection for the constant kernel is obtained, which is again the product of a normal distribution and the scaling solution for the single variable coagulation. Self-similar behavior for the multicomponent coagulation system is investigated analytically in this paper. Asymptotic self-similar solutions for the constant kernel, sum kernel, and product kernel are achieved by introduction of different generating functions. In these solutions, two size-scale variables are introduced to characterize the asymptotic distribution of total mass and individual masses. The result of product kernel (gelling kernel) is consistent with the Vigli-Ziff conjecture to some extent. Furthermore, the steady-state solution with injection for the constant kernel is obtained, which is again the product of a normal distribution and the scaling solution for the single variable coagulation.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第11期1353-1360,共8页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(Nos.11272196 and11222222) the Zhejiang Association of Science and Technology of Soft Science Research Project(No.ZJKX14C-34)
关键词 multicomponent coagulation self-similar solution generating function multicomponent coagulation, self-similar solution, generating function
  • 相关文献

参考文献23

  • 1Smoluchowski, M. V. Drei vortrage uber diffusion, brownsche molekular bewegung und koagula- tion von kolloidteilchen. Zeitschrift fiir Physik, 17, 557-585 (1916). 被引量:1
  • 2Friedlander, S. K. Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics, Oxford University Press, Oxford (2000). 被引量:1
  • 3Silk, J. and White, S. D. The development of structure in the expanding universe. Astrophysical Journal, 223, 59-62 (1978). 被引量:1
  • 4Ziff, R. M. Kinetics of polymerization. Journal of Statistical Physics, 23, 241-263 (1980). 被引量:1
  • 5Niwa, H. S. School size statistics of fish. Journal of Theoretical Biology, 195, 351-361 (1998). 被引量:1
  • 6Kiorboe, T. Formation and fate of marine snow: small-scale processes with large-scale implications. Scientia Marina, 66, 67-71 (2001). 被引量:1
  • 7Yu, F. G. and Turko, R. P. From molecular clusters to nanoparticles: role of ambient ionization in tropospheric aerosol formation. Journal of Geophysical Research: Atmospheres, 106, 4797-4814 (2001). 被引量:1
  • 8Zhao, H., Kruis, F. E., and Zheng, C. Monte Carlo simulation for aggregative mixing of nanopar- ticles in two-component systems. Industrial & Engineering Chemistry Research, 50, 10652-10664 (2011). 被引量:1
  • 9Matsoukas, T., Lee, K., and Kim, T. Mixing of components in two-component aggregation. AIChE Journal, 52, 3088-3099 (2006). 被引量:1
  • 10Van Dongen, P. G. J. and Ernst, M. H. Scaling solutions of Smoluchowski's coagulation equation. Journal of Statistical Physics, 50, 295-329 (1988). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部