期刊文献+

沉水植物茎叶微界面及其对水体氮循环影响研究进展 被引量:16

Research advancements and perspectives on leaf and stem micro-interfaces in submerged macrophytes and its effect on water nitrogen cycling
下载PDF
导出
摘要 沉水植物茎叶表面常富集了水中各类物质,包括有机质、泥沙、菌胶团、藻类、微生物等,形成厚度不等的附着层,形成特殊的茎叶微界面,其具有特殊的氧化-还原异质环境,并能为氮素循环细菌提供有机质,是水中氨化、反硝化及厌氧氨氧化等脱氮行为的重要基础,因此,了解沉水植物茎叶微界面组分、微环境变化特征及其对氮循环的调控作用,对于正确认识和利用沉水植物的生态调控功能、改善水环境质量具有十分重要的意义。基于此,就沉水植物茎叶微界面物质组成、微环境特征及其对水体氮循环影响研究现状进行了归纳总结,并对今后的研究方向进行了简要展望。 Various kinds of substances in water, including organic matter, silt, zoogloea, algae, microorganisms etc., often cumulate on the leaf and stem surface in submerged macrophytes. A micro-interface is therefore established which varies in its composition, structure and thickness according to the actual environmental properties. It induces specific heterogeneous oxidation-reduction condition and provides organic material for nitrogen-cycle bacteria thus plays an important role in micro-interfacial processes such as ammonification, denitrification and anammox. The composition of this micro-interface, its responses to micro-environmental changes and functions in regulating nitrogen cycling constitute the fundamental horizon for better understanding the feature of submerged macrophytes in water management and ecological regulation. The present paper summarizes the research advancements on leaf and stem micro-interface in submerged macrophytes and its effect on water nitrogen cycling. The substance composition and micro-environmental property of the micro-interface are identified and reviewed respectively. Perspectives on future research are raised. Because of the compositional complexity in the leaf and stem micro-interface, recent studies have been mainly focused on the characterization of biotic components for example alga and microbe in submerged macrophytes. Much less information is available concerning the function of a certain component, especially that of the abiotic matters and that their effects on the micro-environmental properties in this micro-interface. Thanks to the development of microelectrode technique, in situ measurement of micro-environmental factors in the leaf and stem micro-interface and their spatial and temporal changes becomes feasible recently. However, current studies are much centered on the non-eutrophicated freshwater in which the major proportional periphyton is considered as autotrophic and the photosynthesis-sourced oxygen is to be consumed by respiration processes. The actual conditio
出处 《生态学报》 CAS CSCD 北大核心 2014年第22期6409-6416,共8页 Acta Ecologica Sinica
基金 国家自然科学基金(41173078) 科技部国际合作重大项目(2010DFB33960) 环保公益性行业科研专项(201309035) 国家水体污染控制与治理科技重大专项(2012ZX07506-007 2014ZX0710-012)
关键词 沉水植物 茎叶微界面 物质组成 微环境特征 水体氮循环 submerged macrophyte leaf and stem micro-interface substantial composition micro-environmental property water nitrogen cycling
  • 相关文献

参考文献11

二级参考文献107

共引文献283

同被引文献324

引证文献16

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部