期刊文献+

An Adaptable Walking-skid for Seabed ROV under Strong Current Disturbance 被引量:4

An Adaptable Walking-skid for Seabed ROV under Strong Current Disturbance
下载PDF
导出
摘要 This paper proposed a new concept of an adaptable multi-legged skid design for retro-fitting to a remotely-operated vehicle (ROV) during high tidal current underwater pipeline inspection. The sole reliance on propeller-driven propulsion for ROV is replaced with a proposed low cost biomimetic solution in the form of an attachable hexapod walking skid. The advantage of this adaptable walking skid is the high stability in positioning and endurances to strong current on the seabed environment. The computer simulation flow studies using Solidworks Flow Simulation shown that the skid attachment in different compensation postures caused at least four times increase in overall drag, and negative lift forces on the seabed ROV to achieve a better maneuvering and station keeping under the high current condition (from 0.5 m/s to 5.0 m/s). A graphical user interface is designed to interact with the user during robot-in-the-loop testing and kinematics simulation in the pool.
出处 《Journal of Marine Science and Application》 2014年第3期305-314,共10页 船舶与海洋工程学报(英文版)
基金 Suuported by Newcastle University in United Kingdom(Project account number:C0570D2330)
关键词 ROV HEXAPOD multi-legged SKID SEABED tidal current ROV 适应性 海底 打滑 电流干扰 SolidWorks Simulation 图形用户界面
  • 相关文献

参考文献25

  • 1Christina G, Meyer N, Martin B (2009). Simulation of an underwater hexapod robot. Ocean Engineering,36, 39-47. 被引量:1
  • 2Chin C, Lau M, Low E (2011). Supervisory cascaded controllers design: experiment test on a remotely-operated vehicle. Proceedings of the 1MechE Part C. Journal of Mechanical Engineering Science, 225(3), 584-603. 被引量:1
  • 3Corradini ML, Monterifl A, Orlando G (2011). An actuator failure tolerant control scheme for an underwater remotely operated vehicle. IEEE Transactions on Control Systems Technology, 19(5), 1036-1046. 被引量:1
  • 4Crespi A, Badertscher A, Guignard A, Ijspeert AJ (2005). AmphiBot 1: an amphibious snake-like robot.Robotics and Autonomous Systems, 50, 163-175. 被引量:1
  • 5Eng YH, Lau WS, Low E, Seet GL, Chin CS (2008). Estimation of the hydrodynamic coefficients of an ROV using free decay pendulum motion. Engineering Letters, 16(3), 326-331. 被引量:1
  • 6Herzog K, Schulte IE, Atmanand MA, Schwarz W (2007). Slip control system for a deep-sea mining machine. IEEE Transactions on Automation Science and Engineering, 4, 282-286. 被引量:1
  • 7Inoue T, Shiosawa T, Takagi K (2013). Dynamic analysis of motion of crawler-type remotely operated vehicles. IEEE Journal of Oceanic Engineering, 38(2), 375-382. 被引量:1
  • 8Jun BH, Lee PM, Back H, Lim YK (2011). Approximated modeling of hydrodynamic forces acting on legs of underwater walking robot. IEEE OCEANS 2011, Spain, 1- 6. 被引量:1
  • 9JunBH, ShimH, ParkJY, KimB, LeePM (2011). A new concept and technologies of multi-legged underwater robot for high tidal current environment. IEEE Symposium on Undepwater Technology (UT) and Workshop on Scientific Us'e oJ'Submarine Cables and Related Technologies (SSC), Tokyo, Japan, 475-479. 被引量:1
  • 10Jun BH, Shim H, Kim B, Park JY, Back H, Lee PM, Kim WJ, Park YS (2012). Preliminary design of the multi-legged underwater walking robot CR200. OCEANS 2012, Yeosu, South Korea, 1-4. 被引量:1

同被引文献40

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部