期刊文献+

基于同步理论的股票网络社团识别研究 被引量:1

Study on Community Identification of Stock Network Based on Synchronization Theory
下载PDF
导出
摘要 利用股票价格波动时间序列的相关特性,基于同步理论研究股票网络的社团结构。通过对关联矩阵的谱分析确定股票网络中存在复杂的社团结构。随后,利用基于Kuramoto模型的同步聚类算法对网络节点(股票)进行动态分组,由局部序参量确定算法的收敛性并得到稳定的社团结构。通过与快速社团检测算法的对比验证,表明基于Kuramoto模型的同步聚类算法能够正确得到股票网络的社团结构,且更符合股票的属性分类。 The substructure of stock chronization theory by utilizing the network, e.g. community, is investigated based on the syn correlation matrix of time series of stock price fluctuation. Through the spectral analysis on the correlation matrix, it's determined that the complicated community structure obviously exists in the stock network. Then, the clustering algorithm based on the synchronization theory incorporating with the Kuramoto model is used to dynamically iden- tify the community structure, which suggests that the groups of stocks well agree with the taxon- omy of stock market. We also apply the fast community detecting algorithm to verify the former results with respect to the same parametric constrains.
出处 《复杂系统与复杂性科学》 EI CSCD 北大核心 2014年第4期48-53,共6页 Complex Systems and Complexity Science
基金 国家自然科学基金(61004102) 中央高校基本科研业务费专项基金(ZYGX2012J075)
关键词 同步理论 股票网络 社团结构 社团检测 synchronization theory stock network community structure community detection
  • 相关文献

参考文献23

  • 1Winfree A T.The Geometry of Biological Time[M].New York:Springer,2001. 被引量:1
  • 2Strogatz S H.Sync:the Emerging Science of Spontaneous Order[M].New York:Hyperion,2003. 被引量:1
  • 3Arenas A,Diaz-Guilera A,Kurths J,etal.Synchronization in complex networks[J].Phys Rep,2008,469(3):93-153. 被引量:1
  • 4Kuramoto Y.Chemical Oscillations,Waves,and Turbulence[M].New York:Courier Dover Publications,2003. 被引量:1
  • 5Arenas A,Diaz-Guilera A,Pérez-Vicente C J.Synchronization reveals topological scales in complex networks[J].Phys Rev Lett,2006,96(11):114102. 被引量:1
  • 6Mantegna R N.Hierarchical structure in financial markets[J].EurJ Phys B,1999,11(1):193-197. 被引量:1
  • 7Bonanno G,Caldarelli G,Lillo F,et al.Topology of correlation-based minimal spanning trees in real and model markets[J].Phys Rev E,2003,68(4):046130. 被引量:1
  • 8Onnela J P,Chakraborti A,Kaski K,et al.Dynamics of market correlations:taxonomy and portfolio analysis[J].Phys Rev E,2003,68(5):056110. 被引量:1
  • 9Cai S M,Zhou Y B,Zhou T,et al.Hierarchical organization and disassortative mixing of correlation-based weighted financial networks[J].Int J Mod Phys C,2010,21(3):135005. 被引量:1
  • 10蔡世民,洪磊,傅忠谦,周佩玲.基于复杂网络的金融市场网络结构实证研究[J].复杂系统与复杂性科学,2011,8(3):29-33. 被引量:17

二级参考文献20

  • 1周涛,周佩玲,汪秉宏,杨春霞,蔡世民.元胞自动机用于金融市场建模[J].复杂系统与复杂性科学,2005,2(4):10-15. 被引量:4
  • 2Mantegna R N,Stanley H E. An Introduction to Econophysics.. Correlation and Complexity in Finance [M]. UK: Cam- bridge University Press, 2000. 被引量:1
  • 3Bouchaud J P, Potter M. Theory of Financial Risk and Derivative Pricing: from Statistical Physics to Risk Management [M]. UK : Cambridge University Press, 2003. 被引量:1
  • 4Voit J. The Statistical Mechanics of Financial Markets [M]. Berlin:Springer, 2005. 被引量:1
  • 5Lux T, Marchesi M. Scaling and criticality in a stochastic multi-agent model of a financial market [J]. Nature, 1999, 397:498 - 500. 被引量:1
  • 6Wang J, Yang C X, Zhou P L, et al. Evolutionary percolation model of stock market with variable agent number [J]. Physica A, 2005, 354:505-517. 被引量:1
  • 7Mantegna R N. Hierarchical structure in financial markets [J]. Eur Phys J B, 1999, 11(1) :193 - 197. 被引量:1
  • 8Bonanno G, Caldarelli G, Lillo F, et al. Topology of correlation-based minimal spanning tree in real and model mar- kets [J]. Phys Rev E, 2003, 68(4) :046130. 被引量:1
  • 9Onnela J P, Kaski K,Kertesz J. Clustering and information in correlation based financial network [J]. Eur Phys J B, 2004, 38(2):353 - 362. 被引量:1
  • 10Kim D H,Jeong H. Systematic analysis of group identification in stock markets [J]. Phys Rev E, 2005, 72(4) :046133. 被引量:1

共引文献16

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部