摘要
土壤水分特征曲线是研究土壤水分运动的重要参数,Van Genuchten方程是目前广泛应用的土壤水分特征曲线方程。由于该方程参数较多,人工调节参数繁琐复杂,应用优化算法实现参数自动调节成为首选。分别采用遗传算法(GA)、粒子群算法(PSO)和改进粒子群算法(CMOPSO)对方程进行参数寻优,对比3种算法的收敛速度、所需迭代次数和算法稳定性。结果表明:3种算法的参数模拟精度均较好;改进粒子群算法的全局搜索能力和收敛速度优于遗传算法与粒子群算法,且所需迭代次数最少,适合VG方程的参数寻优。
Soil water characteristic curve is an important parameter for studying the soil water movement equation .Van Genuchten is widely used in the soil water characteristic curve equation .Because the equation has many parameters and it is complex to manually adjust parameters ,using optimization algorithm to realize the automatic parameters adjustment become the preferred application . This paper uses genetic algorithm (GA) ,particle swarm optimization (PSO) and improved particle swarm algorithm (CMOPSO) to optimize the equation parameters .The convergence speed ,iteration number and stability of the algorithm of the three algorithms are compared .The results show that all the three algorithms have preferable simulation precision ;the global search ability and conver‐gence speed of improved particle swarm algorithm are better than those of Genetic Algorithm and Particle Swarm Algorithm ,and its iteration number is the fewest .So it is suitable for parameters optimization of VG equation .
出处
《节水灌溉》
北大核心
2014年第11期17-20,共4页
Water Saving Irrigation
基金
新疆维吾尔自治区自然科学基金资助(2013211B18)
新疆水文学及水资源重点学科资助(XJSWSZYZDXK20101202)