期刊文献+

GAMLSS模型及其在车损险费率厘定中的应用 被引量:9

GAMLSS and Its Application in Ratemaking of Auto Damage Insurance
原文传递
导出
摘要 在车损险费率厘定中,通常假设索赔频率、索赔强度或纯保费服从指数分布族,并对其均值建立广义线性模型,而假设其他参数对所有风险类别都是固定的常数。这种假设在某些情况下并非成立。GAMLSS模型可以在各种分布假设下同时对一个分布的位置参数、尺度参数和形状参数建立参数或非参数的回归模型,具有很大的灵活性。本文在零调整逆高斯分布假设下把GAMLSS模型应用于我国实际的车损险数据,建立了车损险的费率厘定模型,结果表明,这种模型对车损险实际数据的拟合要优于常用的Tweedie分布假设下的广义线性模型。此外,这种模型厘定的风险保费更加公平合理。 In auto damage insurance ratemaking, it is usually assumed that claim frequency, claim severity or pure premium follow exponential dispersion family, and only the mean is related to explanatory variables in the model and other parameters of the distribution are assumed to be constant for all risk classes. These assumptions are not true in some circumstances. GAMLSS is much more flexible and may relate all parameters (location, scale and shape) of the distribution to explanatory variables through parametric or non-parametric regression models. The paper assumes the pure premium follows zero adjusted inverse Gaussian distribution and applies GAMLSS to auto damage insurance data of China. The result shows that this model can fit the data better tha~ usually used geaeralized linear model under Tweedie distribution assumption and it also can caculate risk premium more resonably and fairly.
出处 《数理统计与管理》 CSSCI 北大核心 2014年第4期583-591,共9页 Journal of Applied Statistics and Management
基金 国家自然科学基金项目(71171193) 教育部重点研究基地重大项目(12JJD790025)
关键词 车损险 费率厘定 GAMLSS模型 零调整逆高斯分布 Tweedie分布 auto damage insurance, ratemaking, GAMLSS, ZAIG distribution, Tweedie distribution
  • 相关文献

参考文献11

二级参考文献17

  • 1陈希孺.数理统计引论[M].北京:科学出版社,1990. 被引量:2
  • 2Anderson D, Feldblum S, Modlin C, et al. A Practitioner's Guide to Generalized Linear Models [J]. CAS Exam Study Note Casualty Actuarial Society - Arlington, 2007, 2: 1-116. 被引量:1
  • 3卡尔斯R,胡法兹M,达呐J,等著.唐启鹤,胡太忠,成世学译.现代精算风险理论(第一版)[M].北京:科学出版社,2005. 被引量:1
  • 4Nelder J A, Mccullagh P. Generalized Linear Models [M]. London: Chapman & Hall, 1989. 被引量:1
  • 5Lemaire J. Bonus-Malus systems in automobile insurance [M]. Netherlands: Kluwer Academic Publishers, 1995. 被引量:1
  • 6Fu L, Moncher R B. Severity distributions for GLMs: gamma or lognormal: evidence from monte carlo simulations [J]. Casualty Actuarial Society Discussion Paper Program Casualty Actuarial Society- Arlington, 2004:149 230. 被引量:1
  • 7Cameron A C and Trivedi P K. Count data models for financial data [J]. Handbook of Statistics, Statistical Methods in Finance, 1996, 14: 363-392. 被引量:1
  • 8Greene W. Econometric Analysis (6th edition) [M]. Prentice Hall: Englewood Cliffs, 2007. 被引量:1
  • 9Akaike H. Information Theory and an Extension of the Maximum Likelihood Principle [C]. Proceedings of the 2nd International Symposium on Information Theory [M]. Budapest: Akademiai Kiade, 1973:267-281. 被引量:1
  • 10Schwartz G. Estimating the dimension of a model [J]. Annals of Statistics, 1978, 6: 461-464. 被引量:1

共引文献47

同被引文献62

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部