期刊文献+

基于主题模型的BBS话题演化趋势分析 被引量:44

Trends of BBS topics based on dynamic topic model
下载PDF
导出
摘要 互联网引发的舆情问题愈发突出,网络舆情研究已被深度关注.话题演化是网络舆情分析的重要内容之一,本文尝试从话题热度变化和内容变化两方面研究舆情动态.本文选取天涯论坛民生讨论的主要版块——天涯杂谈的首发帖为舆情来源,分析比较一系列主题模型后,建立动态主题模型(DTM).通过挖掘随时间变化的动态话题链,从词语变化的微观角度分析热门事件下公众意见的变迁过程,还原事件的整个发展过程.本文提出话题热度计算方法,通过计算2012全年天涯杂谈版块下所有新发帖的话题热度值变化及可视化分析,总结了BBS话题的三个规律. Along with the increasingly prominent issues aroused via Internet, online opinions are more and more concerned by researchers. This paper attempts to study the evolution of online opinions from two aspects, hot degree and BBS content, respectively. The original posts in Tiaya Zatan board, which is a primary board on social topics in Tianya Club, are collected as a source of online public opinion. By comparisons of a series of topic models, the dynamic topic model (DTM) is chosen. After mining the dynamic topics, the evolutions of public opinions toward hot events are analyzed under a micro perspective of changing words, so as to outline the process of those events. A method is proposed to compute the hot degree of the topic, and then the hot de- gree of all topics on the Tianya Zatan board in 2012 are computed and visualized, from which three rules of the topics are summarized under a macro perspective.
出处 《管理科学学报》 CSSCI 北大核心 2014年第11期109-121,共13页 Journal of Management Sciences in China
基金 国家重点基础研究发展计划资助项目(2010CB731405) 国家自然科学基金资助项目(71171187 71371107)
关键词 主题模型 DTM 话题演化 天涯论坛 topic models dynamic topic model topics evolution Tianya club
  • 相关文献

参考文献26

  • 1张泽代,唐锡晋.面向天涯论坛的Web挖掘的初步研究[C].第十一届全国青年系统科学与管理科学学术会议暨第七届物流系统工程学术研讨会论文集,武汉:武汉理工大学出版社,2011:199-204. 被引量:1
  • 2唐锡晋.两个定性综合集成支持技术[J].系统工程理论与实践,2010,30(9):1593-1606. 被引量:9
  • 3Blei D M, Lafferty J D. A correlated topic model of science[J]. Annals of Applied Statistics, 2007, 1:17 -35. 被引量:1
  • 4Alsumait L, Barbara D, Domenic0ni C. On-line LDA: Adaptive topic models for mining text streams with applications to topic detection and tracking[ C ]. Proceedings of the 8th IEEE International Conference on Data Mining, Pisa, December 15 - 19, 2008 : 3 - 12, IEEE. 被引量:1
  • 5Hall D, Jurafsky D, Manning C D. Studying the history of ideas using topic models [ C ]. Proceedings of the 2008 Confer- ence on Empirical Methods in Natural Language Processing, Hawaii , October 25 -27, 2008:363 -371, ACL. 被引量:1
  • 6Allan J, Carbonell J G, Doddington G, et al. Topic detection and tracking pilot study final report [ R ]. Proceedings of the Broadcast News Transcription and Understanding Workshop (Sponsored by DARPA), February, 1998. 被引量:1
  • 7Iwata T, Yamada T, Sakurai Y, et al. Online multiscale dynamic topic models[ C]. In: B. Rao, B. Krishnapuram, A. Tomkins, et al. (eds.), Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, July 25 - 28, 2010 : 663 - 672, ACM. 被引量:1
  • 8Wang X, McCallum A. Topics over time: A non-Markov continuous-time model of topical trends[ C]. In: T. E. Rad, L. H. Ungar, M. Craven, et al. (eds.), Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Dis- covery and Data Mining, Philadelphia, August 20- 23, 2006:424-433, ACM. 被引量:1
  • 9Hoffman M D, Blei D M, Bach F R. Online learning for latent Diriehlet allocation [ C ]. In: J. D. Lafferty, C. K. I. Williams, J. S. Taylor, et al. (eds.), Proceedings of 24th Annual Conference on Neural Information Processing Systems, Vancouver, B. C., December 6-9, 2010:856-864, Curran Associates, Inc. 被引量:1
  • 10Allan J. Introduction to Topic Detection and Tracking[ M]. // In: J. Allan (eds.), Topic Detection and Tracking, Bos- ton: Kluwer Academic Publisher, 2002, ppl- 16. 被引量:1

二级参考文献135

共引文献300

同被引文献403

引证文献44

二级引证文献236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部