期刊文献+

基于公共向量的模糊邻域保持嵌入算法

Fuzzy Neighborhood Preserving Embedding Algorithm Based on Common Vector
下载PDF
导出
摘要 邻域保持嵌入(NPE)算法直接使用K近邻重构样本,由于未区分同类近邻与异类近邻的重要性导致其识别效果不佳,因此提出一种基于公共向量(CV)的模糊邻域保持嵌入算法.首先根据样本K近邻的类别信息求出每个样本对每个类别的隶属度,然后使用公共向量和隶属度重构每个样本,并最小化原始样本与重构样本的残差,最后将该问题转化为求解相应的广义特征值问题以获得最终的投影变换矩阵.该算法尽可能减少投影后同类样本的差异性,较好地分离异类样本.在ORL、Yale、AR和PIEC29这4个人脸数据库上的相关实验验证了算法的有效性. Neighborhood preserving embedding directly reconstructs the sample by its K-nearest neighbors. However, it does not distinguish the importance between intra-class neighbors and inter-class neighbors, which leads to poor recognition performance. In this paper, a common vector-based fuzzy neighborhood preserving embedding (FNPE/CV) algorithm is proposed. Firstly, the degree of membership of every sample for each class is obtained based on the class labels of its K-nearest neighbors. Then, every sample is reconstructed by the common vector and its membership grade for every class. Finally, the problem of minimizing the residual between original sample and its reconstruction sample is converted to solve the generalized eigenvalue problem to obtain the final projection transformation matrix. After the projecting, FNPE/CV minimizes the difference among intra-class samples and separates inter-class samples as far as possible. The experiments on ORL, Yale, AR and PIEC29 face databases demonstrate the effectiveness of the proposed algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第11期1032-1039,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No 61272258) 江苏省自然科学基金项目(No.BK20141195)资助
关键词 人脸识别 公共向量 模糊K近邻 邻域保持嵌入 Face Recognition, Common Vector, Fuzzy K-nearest Neighbor, Neighborhood PreservingEmbedding
  • 相关文献

参考文献16

  • 1Turk M A, Pentland A P. Eigenface for recognition. Jorunal of Cog- nitive Neuroscience, 1991,3 (1): 71-86. 被引量:1
  • 2Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 711-720. 被引量:1
  • 3Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 2003, 15 (6) : 1373-1396. 被引量:1
  • 4Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500) : 2323-2326. 被引量:1
  • 5He X F, Niyogi P. Locality Preserving Projections // Prec of the Conference on Advances in Neural Information Processing Systems 16. Vancouver, Canada, 2003:153-160. 被引量:1
  • 6He X F, Cai D, Yan S C, et al. Neighborhood Preserving Embed- ding//Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005, II: 1208-1213. 被引量:1
  • 7Bilginer G B, Dzhafarov V, Keskin M, et al. A Novel Approach to Isolated Word Recognition. IEEE Trans on Speech and Audio Pro- cessing, 1999, 7(6) : 620-628. 被引量:1
  • 8GUlmezoglu M B, Dzhafarov V, Barkana A. The Common Vector Approach and Its Relation to Principal Component Analysis. IEEE Trans on Speech and Audio Processing, 2001, 9(6) : 655-662. 被引量:1
  • 9Cevikalp H, Neamtu M, Wilkes M, et al. Discriminative Common Vectors for Face Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (1): 4-13. 被引量:1
  • 10He Y H, Zhao L, Zou C 'R. Kernel Discriminative Common Vec- tors for Face Recognition//Proc of the International Conference on Machine Learning and Cybernetics. Guangzhou, China, 2005, VIII: 4605-4610. 被引量:1

二级参考文献25

  • 1Chatterjee C, Kung Z, Roychowdhury V P. Algorithms for accelerated convergence of adaptive PCA. IEEE Transactions on Neural Networks, 2000, 11(2): 338-355. 被引量:1
  • 2Cao L J, Chua K S, Chong W K, Lee H P, Gu Q M. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing, 2003, 55(1-2): 321-336. 被引量:1
  • 3Belhumeur P N, Hespanha J P, Kriegman D J. Eigenface vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720. 被引量:1
  • 4Swets D L, Weng J J. Using discriminant eigenfeature for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831-836. 被引量:1
  • 5Yang J, Zhang D, Prangi A F, Yang J Y. Two-dimensional PCA: a new approach to appearance based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137. 被引量:1
  • 6Zhang D Q, Zhou Z H. (2D)2PCA: 2-directioned 2- dimensioned PCA for efficient face representation and recognition. Neurocomputing, 2005, 69(1-3): 224-231. 被引量:1
  • 7Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 2005, 26(5): 527-532. 被引量:1
  • 8Gulmezoglu M B, Dzhafarov V, Keskin M, Barkana A. A novel approach to isolated word recognition. IEEE Transactions on Speech and Audio Processing, 1999, 7(6): 620-628. 被引量:1
  • 9Gulmezoglu M B, Dzhafarov V, Barkana A. The common vector approach and its relation to principal component analysis. IEEE Transactions on Speech and Audio Processing, 2001, 9(6): 655-662. 被引量:1
  • 10Cevikalp H, Neamtu M, Wilkes M, Barkana A. Discriminative common vectors for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(1): 4-13. 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部