期刊文献+

基于小波和分形理论的机车故障特征提取研究

Research on Fault Feature Extraction of Locomotive Based on Wavelet and Fractal Theory
下载PDF
导出
摘要 实测机车故障信号常常含有大量的噪声,其故障特征常常被淹没在噪声中,要对其进行故障特征提取,必须进行降噪处理。提出了一个新的阈值函数对实测信号进行降噪处理,用关联维数对机车的故障特征进行了提取,有效地提高了机车故障诊断的精度和效率。 Due to measured fault signal of locomotive often contains a lot of noise, the fault feature often is submerged in the noise. In order to extract fault feature, measured fault signal must be reduced noises. A new threshold function is proposed to reduce noises, in the same time, correlation dimension is considered as fault feature. This method improves the accuracy and efficiency of locomotive fault diagnosis effectively.
作者 胡雯雯
出处 《煤矿机械》 北大核心 2014年第11期298-300,共3页 Coal Mine Machinery
基金 华东交通大学校立科研基金资助(12GD06)
关键词 小波分析 关联维数 故障特征 wavelet analysis correlation dimension fault feature
  • 相关文献

参考文献5

二级参考文献38

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部