期刊文献+

图像显著性检测方法解析 被引量:5

Analysis for method of image saliency detection
下载PDF
导出
摘要 图像显著性检测是一种通过对图像颜色、强度、方向等特征进行分析生成图像显著性图的技术。其生成的显著性图可以用于图像分割、图像压缩以及图像识别等图像处理领域,从而改善图像处理的性能。为了对图像显著性检测技术及其发展有一个全面深入的了解,使用文献研究法和比较研究法对其概念及方法进行了探究。针对几种具有代表性的图像显著性检测算法进行了简要的概述和分析,用流程图简明扼要地表示显著性检测算法的基本框架。研究结果显示,图像显著性检测技术的效率在不断提升,算法越来越多样化,在图像处理领域的应用越来越广泛,这些对于图像处理自动化具有重要意义。 Image saliency detection is the technology that generates image saliency diagram by means of analyzing the im-age features such as color,intensity and direction. The generated saliency diagram can be used in the image processing fields such as image segmentation,image compression and image recognition,so as to improve the performance of the image process-ing. In order to comprehend the image saliency detection technology and its development completely,its concept and methods were explored with the literature research method and comparative study method. Several image saliency detection methods with representativeness are summarized and analyzed briefly. The basic framework of saliency detection algorithm is shown in the flow chart concisely. The research results show that the efficiency of image saliency detection technology is improved constantly,its algorithm is more and more diversified,and more widely applied in the field of image processing. These have important signifi-cance for automated image processing.
作者 孙娜娜 刘鑫
出处 《现代电子技术》 2014年第22期1-4,9,共5页 Modern Electronics Technique
基金 国家自然科学基金资助项目(61340019) 山东省自然科学基金资助项目(ZR2012FM029)
关键词 图像显著性 显著性检测 检测方法 图像处理 image saliency saliency detection detection method image processing
  • 相关文献

参考文献11

  • 1KOCH C, ULLMAN S. Shift in selective visual atten- tion: Towards the underlying neural circuitry [J]. Hu- man Neurobiology, 1985, 4(4): 219-227. 被引量:1
  • 2ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transaction on Pattern Analysis and Machine Intelli- gence, 1998, 20(11): 1254-1259. 被引量:1
  • 3MA Yu-fei, ZHANG Hong-jiang. Contrast-based image attention analysis by using fuzzy growing [C]// Proceed- ings of the 11th ACM International Conference on Mul- timedia. Berkeley, CA, USA, : ACM, 2003: 374-381. 被引量:1
  • 4ACHANTA R, ESTRADA F, WILS P, et al. Salient re- gion detection and segmentation [M]// Computer Vision Systems of Lecture Notes in Computer Science. Heidel- berg: Springer, 2008: 66-75. 被引量:1
  • 5CHENG M M, ZHANG G X, MITRA N J, et al. Global contrast based salient region detection [C]//Pro- ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Comput- er Society Press, 2011 : 409-416. 被引量:1
  • 6SHA C.X, LI X.Q, SHAO Q, et al. Saliency detection via boundary and center priors [C]// Proceedings of the 6th Interna- tional Congress on Image and Signal Processing. Los Alamitos: IEEE Computer Society Press, 2013: 1066-1071. 被引量:1
  • 7ACHANTA R, HEMANI S, ESTRADA F, et al. Frequency- tuned salient region detection [C]// Proceedings of the Interna- tional Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2009: 1597-1604. 被引量:1
  • 8ACHANTA R, SUSSTRUNK S. Saliency detection using maxi- mum symmetric surround [C]// Proceedings of the International Conference on Image Processing. Los Alamitos: IEEE Computer Society Press, 2010: 2653-2656. 被引量:1
  • 9NGAU C W H, ANG L M, SENG K P. Bottom-up visual sa- liency map using wavelet transform domain [C]// Proceedings of the International Conference on Computer Science and Informa- tion Technology. Los Alamitos: IEEE Computer Society Press, 2010: 692-695. 被引量:1
  • 10JUDD T, EHINGER K, DURAND F, et al. Learning to pre- dict where humans look [C]// Proceedings of the International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2009 : 2106-2113. 被引量:1

同被引文献30

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部