摘要
对不确定规划经验逼近问题的最优解的几乎处处上半收敛性进行了研究。首先将带有约束的不确定规划问题转化成与其等价的无约束的不确定优化问题,然后将经验测度替代不确定测度得到不确定规划的经验逼近模型,并得出逼近问题的目标函数序列的几乎处处上图收敛性,最后利用上图收敛性理论,给出了不确定规划经验逼近最优解集的几乎处处上半收敛性。
This paper discusses the almost everywhere upper semiconvergence of the optimal solution set sequence of empirical approximation for uncertain programs. Firstly, the constrained uncertain programming is transformed into an equivalent unconstrained uncertain programming. Secondly, an empirical approximation model of uncertain programming is obtained by replacing the uncertain measure and almost everywhere epi-convergenee of object function of approximation model is given. Finally, using the epi-convergence theory, the almost everywhere upper semiconvergence of the optimal solution set of empirical approximations for uncertain programs is obtained.
出处
《模糊系统与数学》
CSCD
北大核心
2014年第5期152-160,共9页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(11272227)
江苏省普通高校研究生科研创新计划项目(CXLX12 0864)
苏州科技学院研究生科研创新计划项目(SKCX12S 041)
关键词
不确定规划
经验逼近
几乎处处上图收敛
几乎处处上半收敛
Uncertain Programming
Empirical Approximation
Almost Everywhere Epi-convergence
Almost Everywhere Upper Semiconvergence