期刊文献+

不确定规划逼近问题最优解的几乎处处上半收敛性

The Almost Everywhere Upper Semiconvergence of the Optimal Solution Set of Empirical Approximation for Uncertain Programs
原文传递
导出
摘要 对不确定规划经验逼近问题的最优解的几乎处处上半收敛性进行了研究。首先将带有约束的不确定规划问题转化成与其等价的无约束的不确定优化问题,然后将经验测度替代不确定测度得到不确定规划的经验逼近模型,并得出逼近问题的目标函数序列的几乎处处上图收敛性,最后利用上图收敛性理论,给出了不确定规划经验逼近最优解集的几乎处处上半收敛性。 This paper discusses the almost everywhere upper semiconvergence of the optimal solution set sequence of empirical approximation for uncertain programs. Firstly, the constrained uncertain programming is transformed into an equivalent unconstrained uncertain programming. Secondly, an empirical approximation model of uncertain programming is obtained by replacing the uncertain measure and almost everywhere epi-convergenee of object function of approximation model is given. Finally, using the epi-convergence theory, the almost everywhere upper semiconvergence of the optimal solution set of empirical approximations for uncertain programs is obtained.
出处 《模糊系统与数学》 CSCD 北大核心 2014年第5期152-160,共9页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11272227) 江苏省普通高校研究生科研创新计划项目(CXLX12 0864) 苏州科技学院研究生科研创新计划项目(SKCX12S 041)
关键词 不确定规划 经验逼近 几乎处处上图收敛 几乎处处上半收敛 Uncertain Programming Empirical Approximation Almost Everywhere Epi-convergence Almost Everywhere Upper Semiconvergence
  • 相关文献

参考文献12

  • 1Liu B. Uncertainty theory, 2nd ed[M]. Berlin:Springer-Verlag,2007. 被引量:1
  • 2王金德编著..随机规划[M].南京:南京大学出版社,1990:387.
  • 3Salinetti G. Consistency of statistic81 estimators:The epigraphical view[C] //Uryasev S, Pardalos P M. Stochastic optimization : Algorithm8 and ApplicatioI18. Dordrecht:Kluwer Academic Publishers,2001:365-383. 被引量:1
  • 4Dupacova J, et al. Asymptotic behavior of statistical estimators and of optimal solutions of optimization problems[J]. The Annals of Statistics,1988,16(4):1517-1549. 被引量:1
  • 5Artstein Z, et al. Consistency of minimizers and the SLLN for stochastic programs [J]. Journal Convex Analysis, 1995,2(1) : 1-17. 被引量:1
  • 6Hess C. Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator[J]. The Annals of Statistics,1996,24(3):1298-1315. 被引量:1
  • 7Zervos M. On the epiconvergence of stochastic optimization problems[J]. Mathematics of Operations Research, 1999, 24(2):495-507. 被引量:1
  • 8Gao X. Some properties of continuous uncertain measure [J]. International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems,2009,17(3) :419-426. 被引量:1
  • 9Lucchetti R, Salinetti G, Wets R J--B. Uniform convergence of probability measures: Topological criteria [J]. Journal of Multivariate Analysis, 1994,51 (2) : 252- 264. 被引量:1
  • 10霍永亮,刘三阳.随机规划经验逼近最优解集序列的几乎处处上半收敛性[J].工程数学学报,2007,24(4):701-706. 被引量:4

二级参考文献13

  • 1霍永亮,刘三阳.随机规划逼近最优解集的上半收敛性[J].西安电子科技大学学报,2005,32(6):953-957. 被引量:17
  • 2骆建文,王金德.随机规划的弱微分性[J].高校应用数学学报(A辑),1997(1):53-62. 被引量:3
  • 3骆建文,高校应用数学学报.A,1997年,12卷,1期,53页 被引量:1
  • 4Wang J D,J Optim Theory Appl,1989年,63卷,79页 被引量:1
  • 5Wang J D,Math Progr Study,1986年,27卷,145页 被引量:1
  • 6Salinetti G.Consistency of statistical estimators:the epigraphical view[C]//S.Uryasev and P M.Pardalos.ed.Stochastic Optimization:Algorithms and Applications.Dordrecht:Kluwer Academic Publishers,2001:365-383 被引量:1
  • 7Dupacova J,Wets R J-B.Asymptotic behavior of statistical estimators and of optimal solutions of optimization problems[J].The Annals of Statistics,1988,16(4):1517-1549 被引量:1
  • 8Artstein Z,Wets R J-B.Consistency of minimizers and the SLLN for stochastic programs[J].Journal Convex Analysis,1995,2(1):1-17 被引量:1
  • 9Hess C.Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator[J].The Annals of Statistics,1996,24(3):1298-1315 被引量:1
  • 10Robinson S M.Analysis of sample-path optimization[J].Mathematics of Operations Research,1996,21(3):513-528 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部