期刊文献+

粉煤灰地质聚合物混凝土的强度特性 被引量:34

Strength Characteristic of Fly Ash Based Geopolymer Concrete
下载PDF
导出
摘要 本文研究了骨料掺量、砂率、养护温度、高温养护时间对粉煤灰地质聚合物混凝土抗压强度,以及劈拉强度、抗折强度、弹性模量、泊松比等力学性能。结果表明:粉煤灰地质聚合物混凝土的抗压强度随骨料掺量及砂率的增加先增大后减小,存在一个相对最优值;强度随养护温度的升高而增大,100℃时达到最大值,且强度增长在高温养护24 h内基本完成。粉煤灰地质聚合物混凝土早期强度较高,7 d以后强度增长较小;劈拉强度随着骨料掺量的增加而提高,抗折强度、弹性模量、泊松比都随骨料掺量的增加先增大后减小,掺量为70%时达到峰值。 The effects of aggregate content,sand ratio,curing temperature and high temperature period on the compressive strength,splitting tensile strength,flexural strength,elastic modulus and Poissons' s ratio of fly ash based geopolymer concrete were studied. The results show that the compressive strength with aggregate content and sand ratio increases at first and then decreases. There exists a relatively optimal value,at which the compressive strength reaches the maximum. Also,the compressive strength increases with the increase of curing temperature and reaches the maximum at 100 ℃. The strength increase has been completed within 24 h. The fly ash based geopolymer concrete has a high early strength and has a smaller increase after 7 d. Splitting strength increases with the increase of aggregate content. The flexural strength,elastic modulus and Poissons' s ratio increase at first and then decreases with the increase of aggregate content,and 70% is the relatively optimal content.
机构地区 [
出处 《硅酸盐通报》 CAS CSCD 北大核心 2014年第10期2723-2727,共5页 Bulletin of the Chinese Ceramic Society
关键词 粉煤灰地质聚合物 骨料掺量 砂率 养护温度 弹性模量 fly ash based geopolymer aggregate content sand ratio curing temperature elastic modulus
  • 相关文献

参考文献7

二级参考文献24

  • 1崔学民,邱树恒,曹德光,周济.水对碱矿渣胶凝材料介电性能的影响(Ⅰ)[J].硅酸盐学报,2007,35(6):791-795. 被引量:6
  • 2DAVIDOVITS J. Geopolymers: Inorganic polymeric new materials [J]. J Thermal Anal, 1991, 37: 1633–1656. 被引量:1
  • 3HABERT G, D’ESPINOSE de LACAILLERIE J B, ROUSSEL N. An environmental evaluation of geopolymer based concrete production: reviewing current research trends [J]. J Clean Prod, 2011, 19: 1229– 1238. 被引量:1
  • 4DAVIDOVITS J. Geopolymers: Man-made rock geosynthesis and the resulting development of very early high strength cement [J]. J Mater Educ, 1994, 16(2–3): 91–137. 被引量:1
  • 5MAJIDI B. Geopolymer technology, from fundamentals to advanced applications: a review [J]. Mater Tech, 2009, 24(2): 79–87. 被引量:1
  • 6ROY D M. Alkali-activated cements: opportunities and challenges [J]. Cem Concr Res, 1999, 29(2): 249–254. 被引量:1
  • 7TANG Mingshu, LU Yinong, LIU Zheng, et al. Alkali-carbonate reaction and pH value [J]. IL Cement, 1991, 88(3): 141–150. 被引量:1
  • 8GILLOTT J E. Mechanism and kinetics of expansion in the alkali-carbonate rock reaction [J]. Can J Earth Sci, 1964, 1(2): 121–145. 被引量:1
  • 9KATAYAMA T. The so-called alkali-carbonate reaction (ACR)—Its mineralogical and geochemical details, with special reference to ASR [J]. Cem Concr Res, 2010, 40(4): 643–675. 被引量:1
  • 10LU Duyou, FOURNIER B, GRATTAN-BELLEW P, et al. Development of a universal accelerated test for alkali-silica and alkali-carbonate reactivity of concrete aggregates [J]. Mater Struct, 2008, 41: 235–246. 被引量:1

共引文献44

同被引文献423

引证文献34

二级引证文献172

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部