期刊文献+

WMSN节点的低内存开销图像压缩方法 被引量:2

Image Compression Method with Low Memory Cost on Sensor Nodes of WMSN
下载PDF
导出
摘要 基于比特平面及二值自适应算术编码提出了一种逐行小波系数编码方法,该方法能与低内存开销的逐行小波变换无缝、高效对接。处理器从图像节点FIFO通道中逐行读出图像信息,完成多级小波变换后,根据各层小波系数概率分布确定量化值,利用4个二值概率模型对系数各比特平面执行二值自适应算术编码,实现了基于小波变换的低内存开销图像压缩。利用该压缩方法处理一幅320像素×240像素仔猪灰度图像,结果表明,量化位数取3位时,存储开销、时间开销及峰值信噪比为5.749 KB、16.312 s及39.72 d B,内存开销低且重构图像质量较高。 Based on bit plane and adaptive binary arithmetic coding, a wavelet coefficients coding scheme which could match the line-based wavelet transform efficiently was proposed. The MCU of the image sensor node read image data from FIFO line by line, executed multi-level wavelet transform, determined the quantization value according to the probability distribution of the wavelet coefficients in different level, performed adaptive binary arithmetic coding based on four binary probabilistic model and realized image compression based on wavelet transform with a low cost of SRAM. The image compression method was applied to handle a 320 pixels × 240 pixels gray image of piglets. Experimental results show that the SRAM cost, time cost and the PSNR was 5. 749 KB, 16. 312 s and 39.72 dB respectively when the quantization value was set to three. This study established the foundation for agricultural image transmission over the low bandwidth WMSN efficiently.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2014年第11期292-297,310,共7页 Transactions of the Chinese Society for Agricultural Machinery
基金 农业部公益性行业科研专项资助项目(201003011) 江苏省产学研联合创新资金资助项目(BY2012207) 南京农业大学青年科技基金资助项目(KJ2011021)
关键词 多媒体传感器网络 图像压缩 低内存系数编码 比特平面 二值算术编码 Multimedia sensor network Image compression Low memeory coefficient coding Bitplane Binary arithmetic encoding
  • 相关文献

参考文献16

  • 1Taubman D. High performance scalable image compression with EBCOT [ J]. IEEE Transactions on Image Processing, 2000, 9(7) : 1158 - 1170. 被引量:1
  • 2赵春江,屈利华,陈明,杨信廷,孙传恒,李文勇.基于ZigBee的温室环境监测图像传感器节点设计[J].农业机械学报,2012,43(11):192-196. 被引量:40
  • 3Tom Pearson. Hardware-based image processing for high-speed inspection of grains[ J]. Computers and Electronics in Agriculture, ~ 2009, 69(1) :12 -18. 被引量:1
  • 4Shapiro J. An embedded wavelet hierarchical image coder [ C ] // Proc. IEEE Int. Con. fcoust, Speech Singal Proc. , 1992, 41(12) : 657 -660. 被引量:1
  • 5张雄明..低内存需求的图像压缩关键技术研究[D].国防科学技术大学,2009:
  • 6Wu H M, Abouzeid A A. Energy efficient distributed JPEG2000 image compression in muhihop wireless networks [ C ] // Applications and Services in Wireless Networks, 2004: 152- 160. 被引量:1
  • 7Johannes Karlsson. Image compression for wireless sensor networks[ D]. Umea: Umea University, 2007. 被引量:1
  • 8Rissanen J J. Generalized Kraft inequality and arithmetic coding[ J]. IBM Journal of Research and Development, 1976, 20 (3) : 198 - 203. 被引量:1
  • 9Said A. A new fast and efficient image codec based on set partitioning in hierarchical trees[ J]. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(3) : 243 -250. 被引量:1
  • 10钟建国,吴冬梅.基于二值自适应算术编码的图像无损压缩算法研究[J].陕西师范大学学报(自然科学版),2007,35(1):30-33. 被引量:2

二级参考文献50

共引文献98

同被引文献27

  • 1Bachmayr M, Burger M. Iterative total variation schemes for nonlinear inverse problems [ J ]. Inverse Problems, 2009,25 (10) : 105004. 被引量:1
  • 2Tsai A, Jr Yezzi A, Willsky S A. Curve evolution implementation of the Munford - Shah functional for image segmentation, denosing, interpolation and magnification[ J ]. IEEE Transactions on Image Processing, 2001, 10 (8) :1169 -1186. 被引量:1
  • 3Criminisi A, Perez P, Toyama K. Object removal by exemplar-based inpainting[ C]///Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003,2:721 -728. 被引量:1
  • 4Liu Yiming, Chen Lifang, Liu Yuan. An image matching algorithm based on SIFT and improved LTP [ C ] //2013 Ninth International Conference on Computational Intelligence and Security (CIS), 2013:432 -436. 被引量:1
  • 5Wang Bingjie, Liang Wei, Wang Yucheng, et al. Head pose estimation with combined 2D SIFT and 3D HOG features[ C ]////2013 Seventh International Conference on Image and Graphics (ICIG), 2013: 650- 655. 被引量:1
  • 6Ali Elqursh, Ahmed Elgammal. Line-based relative pose estimation[ C ]//2011 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR), 2011 : 3049 -3056. 被引量:1
  • 7Chiang M C, Boult T E. Efficient image warping and super-resolution[ C]//IEEE Workshop on Applications of Computer Vision ( WACV96), 1996:56 - 61. 被引量:1
  • 8Schmid C, Mohr R, Bauckhage C. Comparing and evaluating interest points [ C] ff 1998 International Conference on Computer Vision, 1998:230 - 235. 被引量:1
  • 9David G Lowe. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004, 60(2) :91 - 110. 被引量:1
  • 10毛文华,郑永军,苑严伟,张小超.基于色度和形态特征的蝗虫信息提取技术[J].农业机械学报,2008,39(9):104-107. 被引量:13

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部