期刊文献+

Schur Convexity for Two Classes of Symmetric Functions and Their Applications 被引量:1

Schur Convexity for Two Classes of Symmetric Functions and Their Applications
原文传递
导出
摘要 respectively, where r = 1, 2, … , n, and il, i2, … , is are positive integers. In this paper, the Schur convexity of Fn(X, r) and Gn(x, r) are discussed. As applications, by a bijective transformation of independent variable for a Schur convex function, the authors obtain Schur convexity for some other symmetric functions, which subsumes the main results in recent literature; and by use of the theory of majorization establish some inequalities. In particular, the authors derive from the results of this paper the Weierstrass inequalities and the Ky Fan's inequality, and give a generalization of Safta's conjecture in the n-dimensional space and others.
机构地区 School of Mathematics
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2014年第6期969-990,共22页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11271118,10871061,11301172) the Nature Science Foundation of Hunan Province(No.12JJ3002) the Scientific Research Fund of Hunan Provincial Education Department(No.11A043) the Construct Program of the Key Discipline in Hunan Province
关键词 Symmetric function Schur convexity Inequal!ty 对称函数 应用程序 维尔斯特拉斯 Fan不等式 自由贸易区 独立变量 n维空间 正整数
  • 相关文献

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部