期刊文献+

由均匀染色导出的强Chernoff界(英文) 被引量:1

A STRONG CHERNOFF BOUNDS DERIVED FROM EQUITABLE COLORINGS OF GRAPHS
下载PDF
导出
摘要 本文研究了相关变量的Chernoff问题.利用相关变量构造图的方法,利用均匀染色的结果,获得了更强的Chernoff界,推广了Chernoff不等式在相关随机变量的不等式下的界. In this paper, we present a strong Chernoff bounds by using the existence of smallsized equitable colorings of graphs. The case we considered here is for sums of random variableswith dependence. Our result improves the known results as far as we known.
出处 《数学杂志》 CSCD 北大核心 2014年第6期1015-1024,共10页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(11371052 11271267 10971144 11101020) NSCFBJ(1102015) the Fundamental Research Funds for the Central Universities(2011B019 3142013104) North China Institute of Science And Technology Key Discipline Items of Basic Construction(HKXJZD201402)
关键词 均匀染色 相关图 Chernoff界 coloring dependence graph Chernoff bounds
  • 相关文献

参考文献10

  • 1Alon N, Spencer J H. The probabilistic method (3rd edition) [M]. New York: Wiley, 2007. 被引量:1
  • 2Bollobas B, Guy R K. Equitable and proportional coloring of trees [J]. J. Combinatorial Theory, Series B, 1983,34(2): 177-186. 被引量:1
  • 3Chernoff H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations [J]. Annals of Mathematical Statistics, 1952,23(2): 493-507. 被引量:1
  • 4Hajnal H, Szemeredi S. Proof of a conjecture of erdos[A]. Paul. Erdos, A. Renyi, and V.T. Sos, editors, Combinatorial Theory and Its Applications[C]. Vol II, Volume 4 of Colloquia Mathematica Societatis Janos Bolyai, North-Holland, 1970: 601-623. 被引量:1
  • 5Motwani R, Raghavan P. Randomized algorithms [M]. Cambridge: Cambridge University Press, 1995. 被引量:1
  • 6Panconesi A, Srinivasan A. Randomized distributed edge colouring via an extension of the Chernoff-Hoeffding bounds [J]. SIAM J. on Computing, 1997, 26(2): 350-368. 被引量:1
  • 7Pemmaraju S V. Equitable coloring extents Chernoff-Hoeffding bounds [A]. Pemmaraju S V. Approx-Random 2001 [C]. LNCS 2129,2001: 285-296. 被引量:1
  • 8Pemmaraju S V. Equitable colorings, proportional colorings, and Chernoff-Hoeffding bounds [A]. Technical report, TR 01-05, Department of Computer Science, The University of Iowa, 2001. 被引量:1
  • 9Schmidt J, Siegel A, Srinivasan A. Chernoff-Hoeffding bounds For applications with limited independence [J]. SIAM J. Discrete Mathmatics, 1995, 8(2): 223—250. 被引量:1
  • 10Spencer J. Ten lectures on the probabilistic method [M]. Philadelphia: SIAM, 1987. 被引量:1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部