摘要
Based on the generalized gradient approximation (GGA) in density functional theory (DFT) and using the firstprinciple plane wave ultrasoft pseudopotential method, we construct and optimize the structures of intrinsic and oxygen vacancy (Vo) ZnO bulks and nanowires (NWs) in the Castep module. Moreover, the calculation of band structures and the optical properties are carried out. The cMculated results exhibit that the oxygen vacancy exerts a more significant influence on the electronic structures of the ZnO bulks instead of the NWs. What is more, the influences of the Vo on the optical properties are mainly embodied in the ultraviolet region, and the main optical parameters of ZnO bulks and NWs with Vo are anisotropic.
Based on the generalized gradient approximation (GGA) in density functional theory (DFT) and using the firstprinciple plane wave ultrasoft pseudopotential method, we construct and optimize the structures of intrinsic and oxygen vacancy (Vo) ZnO bulks and nanowires (NWs) in the Castep module. Moreover, the calculation of band structures and the optical properties are carried out. The cMculated results exhibit that the oxygen vacancy exerts a more significant influence on the electronic structures of the ZnO bulks instead of the NWs. What is more, the influences of the Vo on the optical properties are mainly embodied in the ultraviolet region, and the main optical parameters of ZnO bulks and NWs with Vo are anisotropic.
基金
Supported by the State Key Program of National Natural Science of China under Grant No 51132002, and the Natural Science Foundation of Hebei Province under Grant No A2011203026.