期刊文献+

大数据背景下的生物医学信息处理 被引量:5

The Processing of Biomedical Information in the Era of Big Data
下载PDF
导出
摘要 信息社会数据爆炸式增长,人类社会迈入大数据时代。先进的信息处理技术对生物医学的进展和人类健康事业的进步有着重要的科学价值和现实意义。本文针对大数据的社会背景,结合生物医学信息自身的特点,从数据挖掘和生物医学文献分析两个方面介绍了重要的信息处理技术和方法。 With the explosion of data produced by the information technology in human society, we have step into the era of Big Data. As one of the fastest scientifi c developing areas, researchers require effi cient means of dealing with all kinds of large-scale biomedical data every day, which is very important for the advancement of biomedical sciences and human healthcare. In this paper, we provide an in-depth analysis of two kinds of necessary technologies of information processing. Firstly, we introduce the primary data mining method. Secondly, in response to the unbridled growth of biomedical literature, we analyze technology of the text mining and information visualization.
作者 张艳
出处 《生命科学仪器》 2014年第5期17-20,共4页 Life Science Instruments
关键词 大数据 生物医学 数据挖掘 信息可视化 Big Data Biomedical Sciences Data Mining Information Visualization
  • 相关文献

参考文献15

  • 1李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J].中国科学院院刊,2012,27(6):647-657. 被引量:1601
  • 2Big Data. Nature, 2008,455(7209): 1-136. 被引量:1
  • 3Wesley T, Kerra B, Edward P, et al. The Future of MedicalDiagnostics: Large Digitized Databases. J Mech Med Biol. 2012,85(3): 363-377. 被引量:1
  • 4Bollier, David. The Promise and Peril of Big Data. USA: The AspenInstitute, 2010: 25-28. 被引量:1
  • 5谭嘉.大数据挖掘.电子工业出版社,2013,3: 45-121. 被引量:1
  • 6Cohen M J, Serkova N J,Wiener K J, et al. 1H-NMR basedmetabolomic signatures of clinical outcomes in trauma patients-beyond lactate and base deficit. J Trauma, 2010,69(1): 31-40. 被引量:1
  • 7Koh H C,Tan G. Data mining applications in healthcare. Journal ofHealthcare Information Management, 2011, 19(2): 65-71. 被引量:1
  • 8Krishnaiah V,Narsimha G, Chandra N S. Diagnosis of Lung CancerPrediction System Using Data Mining Classification Techniques.International Journal of Computer Science and InformationTechnologies, 2013, 4(1): 39-45. 被引量:1
  • 9Mohanty A K, Senapati M R,Lenka S K. An improved data miningtechnique for classification and detection of breast cancer frommammograms. Neural Computing and Applications, 2013, 22(1): 1-8. 被引量:1
  • 10Fradkin D. Using cluster analysis to determine the influence ofdemographic features on medical status of lung cancer patients[EB/j OL]. http://dimacs.rutgers.edu/Workshops/DataMiningTutorial. 被引量:1

二级参考文献65

共引文献1641

同被引文献56

引证文献5

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部