期刊文献+

WSN中基于对偶线性规划的异常检测和定位算法

Anomaly Detection and Localization Algorithm Based on Linear Programming Duality in Wireless Sensor Networks
下载PDF
导出
摘要 文章提出了一种改进的传感器网络异常检测和定位方法;该方法通过两个阶段的探查来收集端到端测量数据实现异常检测和定位;第一阶段探查的目的是选择可以覆盖最大数量异常链路的探点,缩小可疑区域范围,供第2阶段探查,这一阶段的探点选择问题被建模为预算有限条件下的覆盖范围最大化问题,文章提出一种基于对偶线性规划的高效近似方法进行求解;第2阶段的目的是以最小的通信代价,定位出导致观察到的端到端异常现象的具体链路,并根据多环置信度传播算法(LBP)来预测诊断质量;在不同网络设置下展开实验,实验结果表明,文章算法的漏检率和精确求解方法相当但运行速度更快。 In this paper,we present an improved anomaly detection and localization algorithm in wireless sensor networks,where network heterogeneity is exploited for better bandwidth and energy efficiency.End-to-end measurements are collected through a two-phase probing.The goal of the first phase probing is to select probes that can cover as many anomalous links as possible and narrow down suspicious areas to be examined in the second phase.The probe selection problem in this phase is formulated as a budgeted maximum coverage problem,and we propose an efficient approximation algorithm to solve it based on linear programming duality.The second phase probing is aimed at locating individual links that are responsible for the observed end-to-end anomalies with minimum communication cost.The prediction of diagnosis quality is carried out using the Loopy Belief Propagation(LBP)algorithm.Experimental results show that the missed detection rate of our algorithm is the same with the exact solution,but the speed of our algorithm is much faster than the exact solution.
作者 周勇 王新兵
出处 《计算机测量与控制》 北大核心 2014年第11期3666-3669,共4页 Computer Measurement &Control
基金 国家自然科学基金重点项目资助(61325012/F020809)
关键词 无线传感器网络 异常检测 定位 测量数据 探点 线性规划 wireless sensor networks anomaly detection localization measurements probe linear programming
  • 相关文献

参考文献13

二级参考文献50

  • 1张重庆,李明禄,伍民友.数据收集传感器网络的负载平衡网络构建方法[J].软件学报,2007,18(5):1110-1121. 被引量:29
  • 2GreenOrbs Research Group. GreenOrbs [ EB/OL]. [ 2010 - 08 - 12]. http://www. greenorbs. org. 被引量:1
  • 3MO LUFENG, HE YUAN, LIU YUNHAO, et al. Canopy closure estimates with GreenOrbs: Sustainable sensing in the forest [ C]// Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems. California: ACM Press, 2009:99-112. 被引量:1
  • 4CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: A survey [J]. ACM Computing Surveys, 2009, 41(3): 1 -58. 被引量:1
  • 5ZHANG YANG, MERATNIA N, HAVINGA P. Outlier detection techniques for wireless sensor networks: A survey [ J]. IEEE Com- munications Surveys and Tutorials, 2010, 12(2) : 159 - 170. 被引量:1
  • 6PAPADIMITRIOU S, KITAGAWA H, GIBBONS P B, et al. LO- CI: Fast outlier detection using the local correlation integral [ C]// Proceedings of the 19th International Conference on Data Engineer- ing. Bangalore: IEEE, 2003:315-326. 被引量:1
  • 7JANKIRAM D, REDDY V A, KUMAR A V U P. Outlier detection in wireless sensor networks using Bayesian belief networks [ C]// Proceedings of the 1st International Conference on Communication System Software and Middleware. Delhi: IEEE, 2006:1 -6. 被引量:1
  • 8SHENG BO, LI QUN, MAO WEIZHEN, et al. Outlier detection in sensor networks [ C]//Proceedings of the 8th International Symposi- um on Mobile Ad Hoc Networking and Computing. Quebec: ACM, 2007:219-228. 被引量:1
  • 9KNORR E M, NG R T. Algorithms for mining distance-based outli- ers in large datasets [ C]// Proceedings of the 24th International Conference on Very Large Data Bases. San Francisco: ACM, 1998: 392 - 403. 被引量:1
  • 10IOANNIDIS Y. The history of histograms (abridged) [ C]// Pro- ceedings of the 29th International Conference on Very Large Data Bases. Berlin: ACM, 2003:19-30. 被引量:1

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部