期刊文献+

周期时变系统的鲁棒自适应重复控制 被引量:2

Robust Adaptive Repetitive Control for Periodically Time-varying Systems
下载PDF
导出
摘要 针对周期时变系统,提出一种鲁棒自适应重复控制方法.该方法利用周期学习律估计周期时变参数,并结合鲁棒自适应方法处理非周期不确定性.与现有重复控制不同的是,在控制器设计中引入了新变量—周期数,利用周期系统的重复特性,使界的逼近误差随周期数的增加而逐渐减少,保证了系统的全局渐近稳定性.同时将该方法应用于一类非线性参数化系统,使系统在非参数化扰动的情形下,输出误差仍能收敛于0,倒立摆模型的仿真验证了此结果.该设计方法适用于消除神经网络逼近误差对重复控制系统的影响,理论证明了基于神经网络的鲁棒自适应重复控制系统中所有变量的有界性和输出误差的渐近收敛性,关于机械臂模型的仿真结果验证了受控系统具有良好的跟踪性能. In this paper, a robust adaptive repetitive control algorithm is presented for periodically time-varying systems. The periodically time-varying parameters are estimated by periodic learning algorithms, and the non-periodic uncertainties are treated by robust adaptive approaches. Different from the existing repetitive control, a new variable periodic number is introduced to the control design. When this number increases, the convergence error will gradually decrease due to the repetition character of the periodic system, so that the global asymptotic stability is ensured. Further, this method is applied to a class of nonlinearly parameterized systems with non-parametric disturbances, and the tracking error converges asymptotically. This result is verified by a simulation of an invert pendulum model. Moreover, it is proven that the proposed design method is appropriate for the elimination of influence of approximation error of neural network. A theoretical analysis shows that the system output is convergent to the desired one and all signals in the network based robust adaptive repetitive control system are bounded. The simulation result of robotic manipulators shows a good tracking performance of the controlled system.
出处 《自动化学报》 EI CSCD 北大核心 2014年第11期2391-2403,共13页 Acta Automatica Sinica
基金 浙江省自然科学基金(LQ12F03005 LQ12F03011 LY12F03018)资助~~
关键词 周期时变系统 周期数 鲁棒自适应重复控制 非线性参数化 神经网络 Periodically time-varying systems periodic number robust adaptive repetitive control nonlinear parametrization neural networks
  • 相关文献

参考文献33

  • 1Richards J A. Analysis of Periodically Time-Varying Systems. Berlin: Springer-Verlag, 1983. 被引量:1
  • 2Bittanti S, Colaneri P. Periodic Systems: Filtering and Control. London: Springer-Verlag, 2009. 被引量:1
  • 3Sinha S C, Joseph P. Control of general dynamic systems with periodically varying parameters via Liapunov-Floquet transformation. ASME Journal of Dynamic Systems, Measurement and Control, 1994, 116(4): 650-658. 被引量:1
  • 4Liuzzo S, Tomei P. Global adaptive learning control of robotic manipulators by output error feedback. International Journal of Adaptive Control and Signal Processing, 2009, 23(1): 97-109. 被引量:1
  • 5Chen W, Tian Y P. Neural network approximation for periodically disturbed functions and applications to control design. Neurocomputing, 2009, 72(16): 3891-3900. 被引量:1
  • 6朱胜,孙明轩,何熊熊.基于S类函数的严格反馈非线性周期系统的自适应控制[J].自动化学报,2010,36(8):1137-1143. 被引量:7
  • 7Bodson M, Sacks A, Pradeep K. Harmonic generation in adaptive feedforward cancellation schemes. IEEE Transactions on Automatic Control, 1994, 39(9): 1939-1944. 被引量:1
  • 8Ding Z T. Asymptotic rejection of general periodic disturbances in output-feedback nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(2): 303-308. 被引量:1
  • 9Lee R C H, Smith M C. Nonlinear control for robust rejection of periodic disturbances. Systems and Control Letters, 2000, 39(2): 97-107. 被引量:1
  • 10Inoue T, Nakano M, Iwai S. High accuracy control of servomechanism for repeated contouring. In: Proceedings of the 10th Annual Symposium on Incremental Motion Control Systems and Devices. Champaign: Incremental Motion Control Society, 1981. 282-292. 被引量:1

二级参考文献36

  • 1Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York: Wiley, 1995. 被引量:1
  • 2Marino R. Nonlinear Control Design: Geometric, Adaptive, and Robust. London: Prentice-Hall, 1995. 被引量:1
  • 3Jiang Z P, Praly L. Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica, 1998, 34(7): 825-840. 被引量:1
  • 4Yao B, Tomizuka M. Adaptive robust control of SISO non- linear systems in a semi-strict feedback form. Automatica, 1997, 33(5): 893-900. 被引量:1
  • 5Yao B, Tomizuka M. Adaptive robust control of MIMO non- linear systems in semi-strict feedback forms. Automatica, 2001, 37(9): 1305-1321. 被引量:1
  • 6Polycarpou M M, Ioannou P A. A robust adaptive nonlinear control design. Automatica, 1996, 32(3): 423-427. 被引量:1
  • 7Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robotics by learning. Journal of Robotic Systems, 1984, 1(2): 123-140. 被引量:1
  • 8Ham C, Qu Z H, Kaloust J H. A new framework of learning control for a class of nonlinear systems. In: Proceedings of the American Control Conference. Seattle, USA: IEEE, 1995. 3024-3028. 被引量:1
  • 9Inoue T, Nakano M, Iwai S. High accuracy control of servomechanism for repeated contouring. In: Proceedings of the 10th Annual Symposium on Incremental Motion Control Systems and Devices. Urbana, USA: Incremental Motion Control Society, 1981. 285-292. 被引量:1
  • 10Dixon W E, Zergeroglu E, Dawson D M, Costic B T. Repetitive learning control: a Lyapunov-based approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2002, 32(4): 538-545. 被引量:1

共引文献17

同被引文献27

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部