摘要
研究交错级数收敛性判别法.通过计算级数通项的极限和单调性得到三个判据,并对其中两个结论给出形式简化的推论,最后举例说明所提判别法的应用.
The convergence tests of alternating series is investigated. Three tests are obtained by means of calculating the limit and monotonicity of general terms. Two corollaries are given to simplify corresponding conclusions. Several examples are presented to illustrate the effectiveness of the proposed tests.
出处
《大学数学》
2014年第5期82-86,共5页
College Mathematics
基金
中国计量学院校立教改项目(HEX2014019)
中国计量学院教改重点项目(HEX2012005)
关键词
交错级数
莱布尼茨判别法
收敛
发散
alternating series
Leibniz test
convergence
divergence