期刊文献+

完全二部有向图的迭代线图的泛偶圈性(英文)

Bipancyclicity in Iterated Line Digraph of Complete Bipartite Digraph
下载PDF
导出
摘要 泛圈性是网络拓扑结构(图或有向图)的一个重要拓扑性质,也是度量网络性能优劣的一个重要指标。LCBD(d,n)是一类稠密的二部有向图,它是完全二部有向图K_(d,d)的(n-1)重迭代线图。本文研究了LCBD(d,n)的泛偶圈性,通过LCBD(d,n-1)的Euler回构造了一个2d^n位的序列,证明了LCBD(d,n)是泛偶圈的,并且当n是偶数时,LCBD(d,n)是点n泛偶圈的,当n是奇数时,是点(n+1)泛偶圈的。 The pancyclicity in an topology of a network (graph or digraph) is an important topological property.Simuhaneously,it is an key indicator in evaluating an interconnection network.The bipartite digraph LCBD (d,n) is a family of dense bipartite digraphs which defined as the (n-1)-th iterated line digraph of complete bipartite digraph Kdd.In this paper,we study the bipancyclieity of LCBD(d,n).We obtain that LCBD(d,n) is bipancyclic,and vertex-n-bipancyclic if n is a even,or vertex-(n+1)- bipancyclic if n is an odd by constructing a 2dn-digit sequence from a Euler circuit of LCBD(d,n-1).
出处 《石河子大学学报(自然科学版)》 CAS 2014年第4期525-528,共4页 Journal of Shihezi University(Natural Science)
基金 supported by the natural science foundation of the xinjiang uygur autonomous region(2012211B21) Technology Research and Development Project of Shihezi University(2012 ZRKXYQ-YD07)
关键词 泛偶圈性 点泛偶圈性 完全二部有向图 迭代线图 bipancyclic vertex-bipancyclic complete bipartite digraphs iterated line digraph
  • 相关文献

参考文献17

二级参考文献39

  • 1刘春房,王江鲁.[s,t]-图及其Hamilton性[J].山东师范大学学报(自然科学版),2005,20(1):6-7. 被引量:23
  • 2Bondy J A and Murty U S R. Graph Theory with Application. London: The Macmillan Press, 1976. 被引量:1
  • 3Bondy J A. Pancyclic graphs. J. Combin Theory, 1971, B(11): 80-84. 被引量:1
  • 4Haggkvist R, Faudree R J and Schelp R H. Pancyclic graphs-connected Ramsey number. Ars Combin, 1981, 11: 37-49. 被引量:1
  • 5Brandt S. A sufficient condition for all short cycles. Discrete Applied Math., 1997, 79: 63-66. 被引量:1
  • 6Bollobas B and Thomason A. Weakly pancyclic graphs. J. Combin Theory, 1999, B(77): 121-137. 被引量:1
  • 7Schmeichel E F and Hakimi S L. A cycle structure theorem for Hamiltonian graph. J. Combin Theory, 1988, B(45): 99-107. 被引量:1
  • 8Ren H. Another cycle structure theorem for Hamiltonian graphs. Discrete Math., 1999, 199: 237-243. 被引量:1
  • 9Jackson B and Wormald N C. Longest cycle in 3-connected planar graphs. J. Combin Theory, 1992, B(54): 291-321. 被引量:1
  • 10Zhang C. Hamilton cycles in claw free graphs. J. Graph Theory, 1988, 12: 209-216. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部