摘要
泛圈性是网络拓扑结构(图或有向图)的一个重要拓扑性质,也是度量网络性能优劣的一个重要指标。LCBD(d,n)是一类稠密的二部有向图,它是完全二部有向图K_(d,d)的(n-1)重迭代线图。本文研究了LCBD(d,n)的泛偶圈性,通过LCBD(d,n-1)的Euler回构造了一个2d^n位的序列,证明了LCBD(d,n)是泛偶圈的,并且当n是偶数时,LCBD(d,n)是点n泛偶圈的,当n是奇数时,是点(n+1)泛偶圈的。
The pancyclicity in an topology of a network (graph or digraph) is an important topological property.Simuhaneously,it is an key indicator in evaluating an interconnection network.The bipartite digraph LCBD (d,n) is a family of dense bipartite digraphs which defined as the (n-1)-th iterated line digraph of complete bipartite digraph Kdd.In this paper,we study the bipancyclieity of LCBD(d,n).We obtain that LCBD(d,n) is bipancyclic,and vertex-n-bipancyclic if n is a even,or vertex-(n+1)- bipancyclic if n is an odd by constructing a 2dn-digit sequence from a Euler circuit of LCBD(d,n-1).
出处
《石河子大学学报(自然科学版)》
CAS
2014年第4期525-528,共4页
Journal of Shihezi University(Natural Science)
基金
supported by the natural science foundation of the xinjiang uygur autonomous region(2012211B21)
Technology Research and Development Project of Shihezi University(2012 ZRKXYQ-YD07)
关键词
泛偶圈性
点泛偶圈性
完全二部有向图
迭代线图
bipancyclic
vertex-bipancyclic
complete bipartite digraphs
iterated line digraph