期刊文献+

复杂科学与工程问题仿真的隐式微积分建模 被引量:5

Implicit calculus modeling for simulation of complex scientific and engineering problems
下载PDF
导出
摘要 针对现代科学与工程仿真遇到愈来愈多难以用经典微积分建模方法描述的复杂问题,在理论研究和工程实践中提出各种含有多个经验参数的唯象偏微分方程模型,或直接采用统计模型来描述.这些模型的物理意义不是很清楚且参数多,其中部分人为参数缺乏物理意义.因此,利用描述问题的基本解或统计分布构造隐式微积分控制方程.这里"隐式"是指可以不需要或难以推导出该控制方程的显式微积分表达式.该方法仅需微积分控制方程的基本解和相应的边界条件就可以进行数值仿真计算.称该方法为隐式微积分方程建模.考虑多相软物质热传导的幂律行为,采用分数阶里斯(Riesz)势核函数为基本解构造稳态问题的隐式分数阶微积分方程模型并进行数值验证.此外,以列维(Lévy)稳态统计分布的概率密度函数为基本解,构造反常扩散现象的隐式分数阶微积分方程模型.该研究的主要数值计算技术基于径向基函数的配点方法. As to a growing number of complex scientific and engineering problems which are not easy to be described by classical calculus modeling methodology, a variety of phenomenological partial differential equation models including multiple empirical parameters have been proposed in theoretical research and engineering practice. In some cases,the statistical models are even used to substitute for the calculus models. These models are not clearly interpreted in physics and require more parameters in which the artificial parameters have no physical significance. Therefore,the fundamental solution or statistical distribution which can describe the problem is employed to construct the implicit calculus governing equation. It is noted that "implicit"in the study suggests that the explicit calculus expression of this governing equation is not required or difficult to derive. The fundamental solution of calculus governing equation and corresponding boundary conditions are sufficient to perform numerical simulation.This strategy is called the implicit calculus equation modeling. Considering the power law behaviors of heat conduction in multiple phase soft materials,the kernel function of fractional Riesz potential is used as the fundamental solution to build the implicit fractional calculus equation model for steady-state problems. The numerical experiments verify the model. In addition,the statistical density function of Lévy stable statistical distribution is used as the fundamental solution to build the implicit calculus equation of fractional order to describe anomalous diffusion. The major numerical technique in the research is the radial basis function based collocation methods.
作者 陈文
出处 《计算机辅助工程》 2014年第5期1-6,共6页 Computer Aided Engineering
基金 国家自然科学基金面上项目(11372097) 国家杰出青年科学基金(11125208) 111引智计划(B12032)
关键词 隐式微积分方程建模 唯象模型 统计模型 基本解 经验参数 implicit calculus equation modeling phenomenological model statistical model fundamental solution empirical parameter
  • 相关文献

参考文献6

二级参考文献70

共引文献121

同被引文献20

  • 1王少华,邓承继,张小军,祝洪喜.镁橄榄石隔热材料孔体积分形维数特征[J].硅酸盐学报,2015,43(3):351-357. 被引量:6
  • 2BATCHELOR G K. Theory of homogeneous turbulence[M]. Cambridge: Cambridge University Press, 1953. 被引量:1
  • 3CHEN W. A speculative study of 2 /3 -order fractional Laplacian modeling of turbulence : Some thoughts and conjectures [J]. Chaos : AnInterdisciplinary Journal of Nonlinear Science, 2006, 16 (2 ) ; 023126. DOI; 10. 1063/1.2208452. 被引量:1
  • 4SAICHEV A , ZASLAVSKY G M. Fractional kinetic equations: Solutions and applications[J]. Chaos: An Interdisciplinary Journal of NonlinearScience, 1997, 7 (4 ) ; 753-764. DOI; 10.1063/1.166272. 被引量:1
  • 5JU LLIEN M C , PARET J, TABELING P. Richardson pair dispersion in two-dimensional turbulence [J]. Physical Review Letters, 1999,82(14) ; 2872-2875. DOI; 10. 1103/PhysRevLett. 82. 2872. 被引量:1
  • 6MAJDA A J , KRAMER P R. Simplified models for turbulent diffusion : Theory, numerical modeling, and physical phenomena [J]. PhysicsReports, 1999, 314(4-5) ; 237-574. 被引量:1
  • 7PORTA A L, VOTH G A, CRAWFORD A M, et al. Fluid particle accelerations in fully developed turbulence[J] . Nature, 2001, 4 0 9 : 10171019. 被引量:1
  • 8SOKOLOV I M, KLAFTER J, BLUMEN A. Ballistic versus diffusive pair dispersion in the Richardson regime[J] . Physical Review E , 2000,6 1 (3 ) ; 2717-2722. DOI;10.1103/PhysRevE. 61.2717. 被引量:1
  • 9周创兵,陈益峰,姜清辉,卢文波.论岩体多场广义耦合及其工程应用[J].岩石力学与工程学报,2008,27(7):1329-1340. 被引量:53
  • 10马新,郭忠印,杨群.基于分形方法的沥青混合料抗剪性能研究[J].重庆交通大学学报(自然科学版),2009,28(5):873-876. 被引量:4

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部