期刊文献+

基于ISODATA聚类的词汇树图像检索算法 被引量:3

Image Retrieval of Vocabulary Tree Method Based on ISODATA
下载PDF
导出
摘要 词汇树图像检索是一种基于视觉关键词结构的高效的图像检索算法。该算法在特征提取和聚类过程中分别采用SIFT算法和K-means算法。然而,K-means算法对初值比较依赖,当聚类个数未知时,聚类易出现强分现象,且SIFT算法易造成数据溢出和增加检索时间。对此,给出了两种新的特征提取方法,分别称为SIFT_CRONE特征和Color_HU特征,同时引入了ISODATA算法对特征进行聚类。SIFT_CRONE特征提取方法基于SIFT算法确定图像的关键点,采用CRONE算子计算关键点周围像素的梯度,对关键点进行向量描述,其优点是既保持了SIFT特征的优点又减少了检索时间。Color_HU特征是利用SIFT确定关键点和有效区域,对关键点的邻域提取该感兴趣区域的颜色直方图和HU矩特征,降低特征维数,缩短检索时间。在使用ISODATA算法时,设计了一种自适应参数确定算法。实验结果表明,ISODATA算法克服了K-means对初值的依赖,当聚类个数未知时有较好的聚类效果;两种新特征有各自的特点,均可以缩短图像的检索时间,提高检索效率。 Vocabulary tree image retrieval is a kind of efficient image retrieval algorithm based on the structure of visual words.It employes SIFT algorithm and K-means algorithm in the process of feature extraction and cluster respectively.K-means algorithm,however,is heavily dependent on the initial value.The cluster result of K-means is easy to appear forced cluster when the class number is unknown.And SIFT algorithm is easy to cause data overflow and increase the retrieval time.Two novel feature extraction methods,called SIFT_CRONE and Color_HU respectively,were proposed and ISODATA algorithm was introduced in this paper.The SIFT_CRONE feature extraction method determines the key points of the image using SIFT algorithm,calculates the pixel gradient around the key points using CRONE operator and describes the key points by vector.Its advantages are that it keeps the advantages of SIFT features and reduces the time costs of retrieval.In Color_HU feature extraction method,we determined the key points and the effective area by SIFT,and calculated color histogram and HU moment of the effective area to reduce the feature dimension and the retrieval time costs.Meanwhile,we presented an adaptive parameter estimation algorithm for ISODATA.The experimental results show that the ISODATA algorithm can avoid the dependence on initial value of K-means,and can obtain ideal results when the cluster number is unknown.Two proposed feature extraction methods have their own advertages,and both can shorten the time of image retrieval and improve the retrieval efficiency.
出处 《计算机科学》 CSCD 北大核心 2014年第B11期123-127,共5页 Computer Science
基金 国家重大研究计划培育项目(91120014) 陕西省教育厅科研计划项目(12JK0534)资助
关键词 词汇树 图像检索 K-MEANS ISODATA CRONE算子 SIFT特征 Vocabulary tree Image retrieval K-means ISODATA CRONE SIFT
  • 相关文献

参考文献10

  • 1Nister D. Scalable Recognition with a Vocabulary Tree. Proe. of the lntl Conf[C]//on Computer Vision and Pattern Recogni- tion. 2006,2:2161-2168. 被引量:1
  • 2l.owe D G. Distinctive image features from scale-invariant key- points[J]. International journal of Computer Vision, 2004, 60 (2):91-110. 被引量:1
  • 3Qi Jin, Zhao Jian, Xie Yu, et al. Large-Scale Image Retrieval Method ased on Voeabulary Tree[C]//12th Amiual Meeting of China Assoeiation/or Seienec and Technology on Information and Communication Technology and Smart Grid. Scientific Re- search Publishing, 2010 : 219-223. 被引量:1
  • 4齐锦..基于仿射传播聚类算法的词汇树生成研究[D].西北大学,2011:
  • 5陈晓宁..基于词汇树的图像检索中对视觉关键词的提取和研究[D].西北大学,2011:
  • 6汪成亮,兰利彬.采用分数阶微分边缘检测的图像插值[J].北京理工大学学报,2011,31(9):1085-1089. 被引量:3
  • 7Mathieu B,Melchior P,Oustaloup A, et al. Fractional differenti- ation for edge detection [J]. Signal Processing, 2003,83 ( 11 ) : 2421-2432. 被引量:1
  • 8张舒娟,王庆民.基于多特征的图像检索研究[J].计算机与现代化,2010(1):124-127. 被引量:3
  • 9孙即祥编著..现代模式识别[M].北京:高等教育出版社,2008:713.
  • 10陈平生.K-means和ISODATA聚类算法的比较研究[J].江西理工大学学报,2012,33(1):78-82. 被引量:22

二级参考文献24

  • 1张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 2董卫军,周明全,耿国华.基于综合特征图像检索技术研究[J].计算机应用与软件,2005,22(11):34-35. 被引量:19
  • 3李怀琼,陈钱,隋修宝.基于边缘保护的红外图像插值放大算法[J].兵工学报,2006,27(4):655-658. 被引量:8
  • 4贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:225
  • 5Shi Hongjian, Ward R. Canny edge based image expansion [C] // IEEE International Symposium on Circuits and Systems. Phoenix-Scottsdale, Arizona, USA :[s. n. ], 2002: 785 - 788. 被引量:1
  • 6Chen M J, Huang C H, Lee W L. A fast edge-oriented algorithm for image interpolation[J]. Image and Vision Computing, 2005,23(9) :791 - 798. 被引量:1
  • 7Loverro A. Fractional calculus: history, definitions and applications for the engineer [EB/OL]. (2004-01-28) [2010-03-18]. http://www. nd. edu/-msen/Teaching/ UnderRes/FracCalc. pdf. 被引量:1
  • 8Cafagna D. Fractional calculus: a mathematical tool from the past for present engineers [J]. IEEE Industrial Electronics Magazine, 2007,101 : 35 - 40. 被引量:1
  • 9Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations [M]. 1st ed. New York: John Wiley & Sons, 1993. 被引量:1
  • 10Mathieu B, Melchior P, Oustaloup A, et al. Fractional differentiation for edge detection[J]. Signal Processing, 2003,83(11) :2421 - 2432. 被引量:1

共引文献25

同被引文献54

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部