摘要
Titanium metals and its alloy have been widely used in hard tissue repairing fields due to their good biocampatibility and mechanical properties. However, bioinert response and biomaterial associated infections are the main problems for their clinical application. In this study, we chose titanium plates treated with anodic oxidation (AO-Ti), alkali-heat (AH-Ti) and acid-alkali (AA-Ti) methods, which have been proved to be bioactive in vivo, to culture with Staphylococcus aureus and Escherichia coli to investigate the interaction between bioactive titanium surfaces and biofilm. We used X-ray diffraction (XRD), Scanning Electron Microscope (SEM), roughness measurement to study the physical-chemical properties of the as-received bioactive titanium surfaces, and Confocal Laser Scanning Microscope (CLSM) was employed to study the properties of biofilm formed on the biomaterial surfaces. The results indicate that the titanium surface subjected to anodic oxidation treatment is unfavorable for the formation ofbiofilm in vitro because the titania (TiO2) coating formed by anodizing has superior antimicrobial property than the other surfaces. Therefore, anodic oxidation surface modification is effective to endow titanium surface with bioactivity and antimicrobial property, which has the potential to improve the successful rate of the clinical application of titanium implants.
Titanium metals and its alloy have been widely used in hard tissue repairing fields due to their good biocampatibility and mechanical properties. However, bioinert response and biomaterial associated infections are the main problems for their clinical application. In this study, we chose titanium plates treated with anodic oxidation (AO-Ti), alkali-heat (AH-Ti) and acid-alkali (AA-Ti) methods, which have been proved to be bioactive in vivo, to culture with Staphylococcus aureus and Escherichia coli to investigate the interaction between bioactive titanium surfaces and biofilm. We used X-ray diffraction (XRD), Scanning Electron Microscope (SEM), roughness measurement to study the physical-chemical properties of the as-received bioactive titanium surfaces, and Confocal Laser Scanning Microscope (CLSM) was employed to study the properties of biofilm formed on the biomaterial surfaces. The results indicate that the titanium surface subjected to anodic oxidation treatment is unfavorable for the formation ofbiofilm in vitro because the titania (TiO2) coating formed by anodizing has superior antimicrobial property than the other surfaces. Therefore, anodic oxidation surface modification is effective to endow titanium surface with bioactivity and antimicrobial property, which has the potential to improve the successful rate of the clinical application of titanium implants.