摘要
渐进迭代逼近(PIA)方法在CAD领域有很好的自适应性和收敛稳定性,在曲线或曲面的逼近和拟合问题上具有很好的应用前景.文中将该方法应用于二维自由曲线的等距曲线(也称offset曲线)的逼近,提出基于PIA的等距曲线逼近算法.首先在等距曲线上采样数据点,采用Floater的方法对数据点进行参数化,并以这些采样点作为初始控制顶点,由这些初始控制顶点产生初始逼近曲线;然后考察相同参数值处采样点和逼近点的误差,并运用PIA方法逐步逼近等距曲线.该算法分别考虑了等距曲线的多项式逼近和有理逼近.数值实例结果表明,综合控制顶点数和算法误差这2项因素,文中算法具备较好的优势.
In CAD, progressive iterative approximation (PIA) method has a wide range of applications for solving curve and surface approximation and fitting problems due to its good adaptability and stable convergence. In this paper, an efficient approximation method of the plane freeform offset curves based on PIA is proposed. Firstly, original data points are sampled on the offset curve. Secondly, parameterization is carried out on these points based on the Floater's method. By taking these sample points as original control points, an initial approximating curve is obtained. Then, by studying the errors between sample points and approximating points which have same parameter values, the PIA method is applied to minimize the corresponding errors. In our approach, the polynomial approximation method and rational approximation method are both considered in the offset approximation. Numerical examples show that our method has distinct advantages.
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2014年第10期1646-1653,共8页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(U1135003
61100126)
教育部博士点基金(20100111120023)
安徽省自然科学基金(11040606Q42)
关键词
offset曲线
渐进迭代逼近
多项式逼近
有理逼近
offset curves
progressive iterative approximation
polynomial approximation
rationalapproximation