期刊文献+

渐进迭代逼近方法在等距曲线逼近中的应用 被引量:2

A Progressive Iterative Approximation Method in Offset Approximation
下载PDF
导出
摘要 渐进迭代逼近(PIA)方法在CAD领域有很好的自适应性和收敛稳定性,在曲线或曲面的逼近和拟合问题上具有很好的应用前景.文中将该方法应用于二维自由曲线的等距曲线(也称offset曲线)的逼近,提出基于PIA的等距曲线逼近算法.首先在等距曲线上采样数据点,采用Floater的方法对数据点进行参数化,并以这些采样点作为初始控制顶点,由这些初始控制顶点产生初始逼近曲线;然后考察相同参数值处采样点和逼近点的误差,并运用PIA方法逐步逼近等距曲线.该算法分别考虑了等距曲线的多项式逼近和有理逼近.数值实例结果表明,综合控制顶点数和算法误差这2项因素,文中算法具备较好的优势. In CAD, progressive iterative approximation (PIA) method has a wide range of applications for solving curve and surface approximation and fitting problems due to its good adaptability and stable convergence. In this paper, an efficient approximation method of the plane freeform offset curves based on PIA is proposed. Firstly, original data points are sampled on the offset curve. Secondly, parameterization is carried out on these points based on the Floater's method. By taking these sample points as original control points, an initial approximating curve is obtained. Then, by studying the errors between sample points and approximating points which have same parameter values, the PIA method is applied to minimize the corresponding errors. In our approach, the polynomial approximation method and rational approximation method are both considered in the offset approximation. Numerical examples show that our method has distinct advantages.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第10期1646-1653,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(U1135003 61100126) 教育部博士点基金(20100111120023) 安徽省自然科学基金(11040606Q42)
关键词 offset曲线 渐进迭代逼近 多项式逼近 有理逼近 offset curves progressive iterative approximation polynomial approximation rationalapproximation
  • 相关文献

参考文献6

二级参考文献38

共引文献70

同被引文献63

  • 1史利民,王仁宏.NURBS曲线曲面拟合数据点的迭代算法[J].Journal of Mathematical Research and Exposition,2006,26(4):735-743. 被引量:22
  • 2Lin H W,Jin S N,Hu Q Q,et al.Constructing B-spline solids from tetrahedral meshes for isogeometric analysis[OL]. http://www.sciencedirect.com/science/article/pii/S0167839615000369 . 2015 被引量:2
  • 3T. Martin,E. Cohen,R.M. Kirby.Volumetric parameterization and trivariate B-spline fitting using harmonic functions[J]. Computer Aided Geometric Design . 2008 (6) 被引量:2
  • 4中国家用电器研究院创新设计中心[J],2014(01). 被引量:1
  • 5Yuki Kineri,Shuhei Endo,Takashi Maekawa.Surface design based on direct curvature editing[J]. Computer-Aided Design . 2014 被引量:1
  • 6Qianqian Hu.An iterative algorithm for polynomial approximation of rational triangular Bézier surfaces[J]. Applied Mathematics and Computation . 2013 (17) 被引量:1
  • 7Chongyang Deng.An explicit formula for the control points of periodic uniform spline interpolants and its application[J]. Computer Aided Geometric Design . 2013 (4) 被引量:1
  • 8Yunhui Xiong,Guiqing Li,Aihua Mao.Convergence analysis for B-spline geometric interpolation[J]. Computers & Graphics . 2012 (7) 被引量:1
  • 9Hongwei Lin.Adaptive data fitting by the progressive-iterative approximation[J]. Computer Aided Geometric Design . 2012 (7) 被引量:1
  • 10Hiroki Yoshihara,Tatsuya Yoshii,Tadahiro Shibutani,Takashi Maekawa.Topologically robust B-spline surface reconstruction from point clouds using level set methods and iterative geometric fitting algorithms[J]. Computer Aided Geometric Design . 2012 (7) 被引量:1

引证文献2

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部