摘要
Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies.However,it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments.With the advances of the high-throughput techniques,a large number of protein-protein interactions have been produced.Therefore,to address this issue,several methods based on protein interaction network have been proposed.In this paper,we propose a shortest path-based algorithm,named SPranker,to prioritize disease-causing genes in protein interaction networks.Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes,we further propose an improved algorithm SPGOranker by integrating the semantic similarity of gene ontology(GO)annotations.SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account.The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches,ICN,VS and RWR.The experimental results show that SPranker and SPGOranker outperform ICN,VS,and RWR for the prioritization of orphan disease-causing genes.Importantly,for the case study of severe combined immunodeficiency,SPranker and SPGOranker predict several novel causal genes.
Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease stud- ies. However, it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments. With the advances of the high-throughput techniques, a large number of protein-protein interactions have been produced. Therefore, to address this issue, several methods based on protein interaction network have been proposed. In this paper, we propose a shortest path-based algorithm, named SPranker, to prioritize disease-causing genes in protein interaction networks. Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes, we further pro- pose an improved algorithm SPGOranker by integrating the semantic similarity of gene ontology (GO) annotations. SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account. The proposed algorithms SPranker and SPGOranker were applied to 1598 known or- phan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches, ICN, VS and RWR The experimental results show that SPranker and SPGOranker outperform ICN, VS, and RWR for the prioritization of orphan disease-causing genes. Importantly, for the case study of severe combined immunodeficiency, SPranker and SPGOranker predict several novel causal genes.
基金
supported in part by the National Natural Science Foundation of China(61370024,61428209,61232001)
Program for New Century Excellent Talents in University(NCET-12-0547)