期刊文献+

关于一族模的任意重张量积的实性 被引量:1

Reality of the arbitrary-fold tensor products of an arbitrary family module
下载PDF
导出
摘要 引进一族模的任意重张量积的概念.通过建立一个充分必要条件,模的任意重张量积的半实性被得到刻画。此外,本文给出了一族模的张量积具有序的一些充分必要条件。 In this paper,the notion of arbitrary-fold tensor products of modules was introduced.With the establishing the necessary and sufficient conditions,the semi-reality of arbitrary-fold tensor products of modules was characterized.Moreover,some necessary and sufficient conditions for the tensor product of an arbitrary family of modules to possess an ordering was present.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2014年第4期324-329,共6页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金项目(10971044) 海南大学青年基金项目(qnjj1246)
关键词 半实模 任意重张量积 module semireal module ordering arbitrary-fold tensor products
  • 相关文献

参考文献12

  • 1PRESTEL A. I.ectures on Formally Real Fields[M].In: Lecture Notes in Mathematics, vol. 1093. Berlin- Heidelberg-New York: Springer-Verlag, 1984. 被引量:1
  • 2曾广兴著..实域论[M].北京:科学出版社,2003:353.
  • 3戴执中著..实代数引论[M].南昌:江西高校出版社,1999:140.
  • 4LAM T Y. An Introduction to Real Algebra[J]. Rocky Mountain J Math, 1984,14(4) :767-814. 被引量:1
  • 5LAM T Y. The Theory of Ordered Fields[M]. In: l.ec- ture Notes in Pure and Appl Math, New York: Dek- ker,1980,55. 被引量:1
  • 6MARSHALL M. Orderings and Real Places on Com- mutative Rings[J]. Jour Alg, 1991,140:485-501. 被引量:1
  • 7ZENG G. X. On Formally Real Modules[J]. Comm. Al- gebra,1999,27(2) :5847-5856. 被引量:1
  • 8HUANG D M. Orderings and Preorderings on Mod- ules[J]. J Math Comput Sci,2014,4(3) :574-586. 被引量:1
  • 9黄冬明,曾广兴.关于半实模的张量积[J].南昌大学学报(理科版),2004,28(2):124-129. 被引量:1
  • 10CHUNG I Y. Direct Decomposition of Tensor Products into Subtensor Products[J]. Proc Amer Math Soe, 1973,37:1-9. 被引量:1

二级参考文献2

  • 1Zeng Guangxing. On Formally Real Modules[J]. Comm.Algebra, 1999, 27(2) :5 847- 5 856. 被引量:1
  • 2Atiyah M F. Macdonald I G. Introduction to Commutative Algebra[ M]. Addison - Wesley, 1969. 被引量:1

同被引文献6

  • 1丛金明,张长温,李可峰.超线性空间[J].济南大学学报(自然科学版),2007,21(3):264-266. 被引量:1
  • 2CASTON L,FIORESI R.Mathematical Foundations of Supersymmetry[J].Rings and Algebras,2007,3:9-21. 被引量:1
  • 3FARID Makhsoos,MAJID Bashour.Z 3-Graded Geometric Algebra[J].Adv Studies Theor Physics,2010,4(8):383-392. 被引量:1
  • 4孟道骥,白树伟.左对称代数[J].南开大学学报:理科版,1995,28(4):1-6. 被引量:1
  • 5LE Roy,BERTRAND.A Z 3-graded generalization of supersymmetry[J].Journal of Mathematical Physics,1996,37(1):474-483. 被引量:1
  • 6JOSEPH J.Rotman.Advanced Modern Algebra[M].Bei Jing:Higher Education,2004:714-780. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部