期刊文献+

基于PSO优化LS-SVM的小样本非线性协整检验与建模研究 被引量:10

Nonlinear cointegration test and error correction modeling based on LS-SVM optimized by PSO in small sample
原文传递
导出
摘要 针对小样本非线性时间序列,根据非线性协整的定义,利用基于粒子群优化最小二乘支持向量机的方法,对小样本非线性协整关系检验与非线性误差修正模型建模进行研究,设计了方法的逻辑流程.对舰船维修费指数与物价指数进行实证研究,在协整关系类型判断的基础上,实现了小样本非线性协整关系的检验,建立了预测舰船维修费指数的非线性误差修正模型,并与线性向量自回归模型进行分析比较.研究表明:基于粒子群优化最小二乘支持向量机的小样本非线性协整检验与建模方法,刻画了小样本系统的非线性协整关系,所建立的非线性误差修正模型具有较好的预测效果,能够有效地预测小样本非线性系统. Aiming at the small sample time series,a nonlinear cointegration test and error correction modeling method based on the least squares support vector machine(LS-SVM) which is optimized by particle swarm optimization(PSO) is put forward according to the definition of nonlinear cointegration,and the logic process is designed.Then the empirical study on the ship maintenance price index(SMPI) and several price indexes is analyzed through the method introduced in this paper.The nonlinear cointegration test among the empirical data is realized after the judgement of cointegration types,and the nonlinear error correction model(NECM) of SMPI is established.The results indicate that the method of nonlinear cointegration test and error correction modeling based on LS-SVM optimized by PSO in small sample describes the nonlinear cointegration of small sample system well,and the NECM established by this method can availably forecast the small sample nonlinear system comparing to the linear vector auto regressive model.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第9期2322-2331,共10页 Systems Engineering-Theory & Practice
基金 国家社会科学基金(11GJ003-72) 海工大自然科学基金(HGDQNJJ13048)
关键词 小样本 非线性协整 非线性误差修正模型 PSO LS-SVM small sample nonlinear cointegration NECM PSO LS-SVM
  • 相关文献

参考文献26

  • 1Engle R E, Granger C W J. Coiniegration and error correction: Representation, estimation and testing[J]. Econometrica, 1987, 55(3): 251-276. 被引量:1
  • 2Mounir B.Energy consumption and GDP in Tunisia: Cointegration and causality analysis[J]. Energy Policy, 2009, 37(7): 2745-2753. 被引量:1
  • 3Svetlana M, Russell S.Cointegration between oil spot and future prices of the same and different grades in the presence of structural change[J]. Energy Policy, 2009, 37(5): 1687-1693. 被引量:1
  • 4Wei R X, Du J G. Dynamic influence analysis of the CPI on ship maintenance hourly rate based on VAR model[C]// 2011 International Conference on Management Science and Industrial Engineering. Harbin: IEEE Press, 2011: 594-598. 被引量:1
  • 5Granger C W J. Modelling nonlinear relationships between extended memory variables[J]. Econometrica, 1995, 63(2): 265-279. 被引量:1
  • 6张喜彬,孙青华,张世英.非线性协整关系及其检验方法研究[J].系统工程学报,1999,14(1):57-68. 被引量:26
  • 7刘丹红,张世英.基于小波神经网络的非线性误差校正模型及其预测[J].控制与决策,2006,21(10):1114-1118. 被引量:12
  • 8蒋铁军,李积源.基于支持向量机的武器系统费用预测分析[J].系统工程理论与实践,2004,24(9):121-124. 被引量:15
  • 9Shih P C, Liu C J. Face detection using discriminating feature analysis and support vector machine[J]. Pattern Recognition, 2006, 39(2): 260-276. 被引量:1
  • 10Kennedy J, Eberhart R C. Particle swarm optimization[C]// Proceedings of 1995 IEEE International Conference on Neural Networks. New York, USA: IEEE, 1995: 1942-1948. 被引量:1

二级参考文献35

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2袁小芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J].控制与决策,2006,21(1):111-113. 被引量:55
  • 3[1]Wilson E 0.Sociobiology.The News Synthesis[M].Belknap Press,Cambridge,MA,1975. 被引量:1
  • 4[2]Kennedy J,Eberhart R C.Particle Swarm Optimization[A].In:Proc IEEE International Conference on Neural Networks[C].IV Piscataway,NJ:IEEE Service Center,1995.1942-1948. 被引量:1
  • 5[6]曾海潮,介婧,崔志华.微粒群算法[M].北京:科学出版社,2004. 被引量:1
  • 6Sun J,Feng B,Xu W B.Particle swarm optimization with particles having quantum behavior[C]//Proeeedings of the Congress on Evolutionary Computation, 2004. 被引量:1
  • 7Suykens J A K, Gestel T V, Brabanter J D.Least squares support vector machines[M].Singapore: World Scientific Publishers, 2003. 被引量:1
  • 8Lee C W,Neural Networks,1997年,10卷,1期,61页 被引量:1
  • 9Said S EDickey D A,Biometrika,1984年,71卷,599页 被引量:1
  • 10Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag, 1995. 被引量:1

共引文献66

同被引文献114

引证文献10

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部