期刊文献+

基于支持向量机多分类的眼电辅助肌电的人机交互 被引量:2

Electrooculogram assisted electromyography human-machine interface system based on multi-class support vector machine
下载PDF
导出
摘要 针对单一肌电信号在控制系统中正确识别率不高问题,设计并实现了一种基于支持向量机(SVM)多分类的眼电(EOG)辅助肌电(EMG)的人机交互(HCI)系统。该系统采用改进小波包算法和阈值法分别对EMG信号和EOG信号进行特征提取,并对特征向量融合;然后提取特征参数作为SVM的输入来识别EMG信号和EOG信号动作模式,根据分类结果生成控制命令。实验证明,该系统比单一肌电控制系统更便于操作,稳定性好,正确识别率高。 Concerning the low correct recognition rate of the Electromyography( EMG) control system, a new HumanComputer Interaction( HCI) system based on Electrooculogram( EOG) assisted EMG was designed and implemented. The feature vectors of EOG and EMG were extracted by threshold method and improved wavelet transform separately, and the feature vectors were integrated together. Then the features were classified by multi-class Support Vector Machine( SVM), and the different control commands were generated according to the result of pattern recognition. The experimental results prove that, compared with the single EMG control system, the new system has better operability and stability with higher correct recognition rate.
出处 《计算机应用》 CSCD 北大核心 2014年第11期3357-3360,3368,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60905066 51075420) 科技部国际合作项目(2010DFA12160) 重庆市科技攻关项目(CSTC 2010AA2055)
关键词 肌电 眼电 小波包 支持向量机 多分类 Electromyography(EMG) Electrooculogram(EOG) wavelet packet Support Vector Machine(SVM) multi-class
  • 相关文献

参考文献13

二级参考文献62

共引文献32

同被引文献24

  • 1LUO L, CHEN X. Integrating piecewise linear representation and weighted support vector machine for stock trading signal prediction [J]. Applied Soft Computing, 2013, 13(2): 806 -816. 被引量:1
  • 2CHANG P-C, FAN C-Y, LIU C-H. Integrating a pieeewise linear representation method and a neural network model for stock trading points prediction [ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2009, 39( 1): 80 - 92. 被引量:1
  • 3CHANG P-C, LIAO T W, LIN J-J, et al. A dynamic threshold de- cision system for stock trading signal detection [ J]. Applied Soft Computing, 2011, 11(5): 3998-4010. 被引量:1
  • 4ABU-MOSTAFA Y S, ATIYA A F. Introduction to financial forecas- ting [J]. Applied Intelligence, 1996, 6(3): 205-213. 被引量:1
  • 5KEOGH E, CHU S, HART D, et al. An online algorithm for seg- menting time series [ C]//ICDM 2001 : Proceedings of the 2001 In- ternational Conference on Data Mining. Piseataway: IEEE, 2001: 289 - 296. 被引量:1
  • 6KEOGH E, CHU S, HART D, et al. Segmenting time series: a survey and novel approach [ J]. Data Mining in Time Series Data- bases, 2004, 57:1-22. 被引量:1
  • 7WU H, SALZBERG B, ZHANG D. Online event-driven subsequenee matching over financial data streams [ C]// Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2004:23-34. 被引量:1
  • 8AGRAWAL R, FALOUTSOS C, SWAMI A. Efficient similarity search in sequence databases [ C]//FODO '93: Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms, LNCS 730. Berlin: Springer, 1993:69-84. 被引量:1
  • 9CHAN K-P, FU W-C. Efficient time series matching by wavelets [C]// ICDE 1999: Proceedings of the 15th International Confer- ence on Data Engineering. Washington, DC: IEEE Computer Soci- ety, 1999: 126-133. 被引量:1
  • 10ZHANG D, ZHOU L. Discovering golden nuggets: data mining in financial application [ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34 (4): 513-522. 被引量:1

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部